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Foreword

The achievement gap in mathematics remains 
an abhorrent reality, despite periodic surges and 
fragmented efforts of school reform movements 
to eradicate it. We cannot deny that mathematics 
education in the United States has undergone 
dramatic transformations during the 20 or more 
years that have passed since I first encountered 
Lucy Sells’ 1978 seminal research on the 
relationship between mathematics education 
and access to courses and careers in science and 
engineering. Sells, a Berkeley sociologist who 
sought to understand the under-representation of 
women in science-related professions, identified 
mathematics as the “critical filter.” At that time, 
my attention was on the achievement gap in 
mathematics because it served as an effective pre-
college filter for access to science-related courses 
and careers for African American and Latino/
Hispanic and female students. In the introduction 
to Mathematics and Science: Critical Filters for 
the Future of Minority Students (first published in 
1985), the available data allowed me to summarize 
the situation at that time quite simply: 

Black and Hispanic students are scoring 
below the national norm on science and 
mathematics achievement tests and are 
not enrolling in advanced high school 
mathematics classes in proportion to their 
numbers in the population…. Because 
mathematics is a sequential subject and 
most science and science-related posi-
tions require a mathematics background, 
minority students must be encouraged to 
begin their mathematics education early 
and to continue through high school at  
a minimum.

William Tate’s new monograph Access 
and Opportunities to Learn Are Not Accidents: 
Engineering Mathematical Progress in Your School 

comes at a time when eliminating this gap takes 
on a new urgency, one driven by this country’s 
quest to maintain its position in a technology-
driven, global economy that requires a new level 
of mathematical competency from its workers, 
even those who are not directly engaged in science 
and engineering fields. The 2000 Census and 
subsequent demographic projections strongly 
suggest that it is foolhardy not to prepare all 
students for a meaningful role in addressing the 
challenges the nation can expect to face in light 
of rapidly expanding globalization. Large-scale 
past failures to achieve parity of outcomes in 
mathematics learning makes this monograph a 
welcome tool for those who are determined to 
eliminate the achievement gap. 

While my 1985 publication sought to develop 
for educators—particularly elementary and middle 
school principals and teachers—a research-based 
awareness of then-known cognitive, affective, and 
classroom variables related to minority student 
performance in mathematics and science, Access 
and Opportunities to Learn Are Not Accidents: 
Engineering Mathematical Progress, takes us 
deeper, particularly into the issues of classroom 
and instructional variables. Using an engineering 
metaphor, Dr. Tate has carefully developed a tool 
to help readers—whether they are concerned with 
policy, practice, or equity issues in mathematics—
know the kind and quality of information they 
would need in designing effective mathematics 
intervention programs. He provides the “designer” 
with the historical context for this work: a 
summary of the events, movements, and policies 
that have had a significant impact on school 
mathematics, with particular attention to the 
unique mathematics reform history and challenges 
faced by urban schools. True to the spirit of 
engineering, he defines the problem, providing a 
rich exploration of current demographic trends 
juxtaposed with mathematics achievement 
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trends. His summaries of the research and 
analyses of data from the National Longitudinal 
Study (NELS) and the National Assessment 
of Educational Progress (NAEP) can serve as 
cohesive resources on trends. We usually read 
these kinds of reports individually, but his analysis 
across these two major assessment programs quite 
effectively highlights for even the busiest reader 
trends in mathematics performance by race/
ethnicity and socioeconomic status. The data give 
concrete meaning to the term “achievement gap,” 
making a strong case for sufficiently resourced, 
cohesive intervention in the mathematics 
education of low SES students in general—and low 
SES minority students, in particular.

To assist educators in designing a cohesive 
set of intervention strategies, Dr. Tate introduces 
a user-friendly theoretical framework, based on 
Opportunity to Learn research and data from 
international assessments. With this framework in 
mind, he engages the reader in an exploration of 
powerful classroom/instructional variables related 
to “time and quality” factors in the learning of 
mathematics. Appropriate content exposure, 
coverage, and emphasis and quality instructional 
delivery are all essential. Fortunately, in the 

discussion of instructional delivery, the often-
overlooked issue of some students having access 
but not the support that would enable them to 
exploit the opportunity to learn mathematics  
is addressed. 

 Access and Opportunities to Learn Are Not 
Accidents: Engineering Mathematical Progress 
offers us much solid information, substantive 
recommendations, thoughtful strategies, and 
innovative models. This monograph offers tools for 
understanding and action. With comprehensive 
planning, intentional implementation, monitoring, 
and appropriate assessment, we can eliminate the 
achievement gap. 

Thank you, William Tate, for the hard facts 
and the promising strategies that you offer here! 
Thank you, Dr. Francena Cummings, Director 
of the Mathematics and Science Consortium at 
SERVE, for recognizing the need and supporting 
the development of this monograph.

DeAnna Banks Beane, Director
Partnership for Learning
Association of Science Technology Centers 
Incorporated
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About 20 years ago, I began working with 
schools to improve minority student participation 
and achievement in mathematics and science, 
and there were only a few resources available on 
this topic. The most practical tool available was 
Mathematics and Science: Critical Filters for the 
Future (Beane, 1985). In this document, Beane 
described research-based factors that influenced 
the achievement and participation of minority 
students. (See the Foreword by Beane in this 
document.) In addition to delineating research-
based factors, Critical Filters offered strategies to 
support elementary principals and school-based 
teacher leaders in designing intervention plans 
to address improving mathematics and science 
achievement. While there are signs that there have 
been many initiatives targeting minority students’ 
achievement in mathematics since 1985, there is 
still a considerable dearth of research and practical 
tools related to this issue. Further, current trends 
across national assessment sources show that there 
have been some changes in the achievement of 
underserved and minority students; however, the 
“achievement gap” persists. 
  With the release of Curriculum and 
Evaluation Standards for School Mathematics 
in 1989 and the subsequent release of Principles 
and Standards for School Mathematics in 2000, 
the National Council of Teachers of Mathematics 
(NCTM) set a clear standard: Mathematical 
power must be considered the right of—and the 
expectation for—every child. To this end, in 
Principles and Standards for School Mathematics, 
the equity principle offers a vision of mathematics 
education that includes high expectations, and 
worthwhile opportunities for all students. While 
the “mathematics-for-all” disposition may not be 
new, it is much more explicit about who can and 
should have access to quality mathematics. 

The Southeast Eisenhower Regional 
Consortium at SERVE commissioned this 

monograph, Access and Opportunities to Learn 
are Not Accidents: Engineering Mathematical 
Progress in Your School, to build on the literature 
related to factors and interventions impacting 
the achievement of underserved students in 
mathematics education. As the title implies, the 
author, Dr. William F. Tate, asserts that access and 
opportunities to quality mathematics education 
require thoughtful action and planning. Utilizing 
an Opportunity to Learn (OTL) framework, 
he argues that time, quality, and design are key 
building blocks for engineering mathematical 
progress in schools. These building blocks, 
however, must be situated within the larger context 
of the system that supports the mathematics 
program. In essence, the mathematics program 
will be impacted by factors like policies, fiscal 
resources, and community and national contexts.

Dr. Tate amplifies his message of engineering 
mathematical progress by stressing the importance 
of a clear vision and learner goals that reflect 
state and local mathematics standards and 
accountability structures. While many arguments 
around improving mathematics for underserved 
and minority students center on access to 
courses and tracking, he focuses on equally 
important variables related to quality instruction 
in mathematics classrooms and support 
infrastructures. This focus includes the selection 
and implementation of a quality curriculum and  
an accountability plan that monitors student 
progress, ultimately providing data that may  
be used in continuous refinement of the 
mathematics program.

What does this mean for advancing 
underserved populations’ participation in quality 
mathematics programs? There is an expectation 
that teachers will be the heart of delivering 
quality instruction, embracing instructional 
practices that include a major shift from their 
traditional methods of teaching—lecturing and 

Preface
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Prefaceviii

textbook-oriented instruction. To this end, Dr. 
Tate encourages providing models of professional 
development that afford teachers similar 
opportunities—active learning that is designed 
from the ideas and resources related to their daily 
work with students. Moreover, there is a clear 
expectation that teachers have an opportunity to 
learn together as they consider standards-based 
instruction. As teachers learn to negotiate various 
professional development strategies like coaching, 
cases, mentoring, and study groups, they are  
often empowered to provide leadership within the 
local schools.

Empowering teachers! Empowered students! 
Reform in mathematics has been ongoing for quite 
a while but Cummins (1989) asserts that it is only 
possible when educators play an active role in 
involving students in the process. He believes that:

References

Cummins, J. (1989). Empowering minority 
students. Sacramento: California Association for 
Bilingual Education.

Students who are empowered by their 
interactions with educators experience a 
sense of control over their own lives and 
they develop the ability, confidence, and 
motivation to succeed academically. They 
participate competently in instruction as 
a result of having developed a confident 
cultural identity and appropriate 
strategies for accessing the information or 
resources they require in order to carry 
out academic tasks to which they are 
committed (p.4).

Cummins’ remarks emphasize how important 
teachers are to students’ learning and liking 
mathematics. Access and Opportunities to Learn: 
Engineering Mathematical Progress in Your 
Schools offers valuable data and strategies for 
designing and maintaining quality mathematics 
programs. This monograph should be valuable 
to policymakers, teacher leaders, principals, and 
educators who are responsible for providing K–12 
mathematics education. 

Francena D. Cummings, Director  
Southeast Eisenhower Regional Consortium 
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In 1985, the Mid-Atlantic Equity Center 
published Mathematics and Science: Critical 
Filters for the Future, addressing mathematics 
education and academic opportunity. In this 
monograph, DeAnna Banks Beane argued, 
“The success of many intervention programs 
demonstrates that there are no permanent barriers 
to minority student achievement in science and 
mathematics. However, the data tell us that the 
longer we wait to intervene, the more invincible 
the barriers become” (p. 1). Her remarks are a 
reminder of the challenges and opportunities in 
school mathematics requiring clarification and 
associated strategies for change and improvement. 
This monograph represents an effort to build 
upon and extend beyond the literature on school 
mathematics as discussed in Mathematics and 
Science: Critical Filters for the Future. 

The political and educational landscape in 
school mathematics has changed in important 
ways since 1985. Three significant changes are 
discussed here. The first change is the introduction 
of mathematics standards to the education 
community, specifically the 1989 release of the 
Curriculum and Evaluation Standards for School 
Mathematics published by the National Council 
of Teachers of Mathematics (NCTM). This 
document was a part of a series of mathematics 
standards documents produced by the Council 
(NCTM, 1991; 1995; 2000). The role of standards 
in educational practice and policy making has 
gained traction, and today dominates discourse 
related to school mathematics. The NCTM 
Standards documents and related educational 
policy developments have resulted in the rapid 
evolution of standards-based language. In the post 
Curriculum and Evaluation Standards for School 
Mathematics era (1990-2002), the word “standard” 
produced 26,843 documents in the ERIC database. 
While the citations were not all directly related 
to school mathematics, the point here is that 
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standards-based language permeates the  
education terrain. Most states have standards for 
school mathematics that signal to local school 
districts goals for instruction and desired  
student outcomes.

A second change is a movement calling 
for educational leadership to more directly 
address issues of learning and teaching in 
schools (Rowan, 1995). Significant changes 
are taking place in the ways the constructs of 
teaching and learning are now being defined by 
researchers, practitioners, and policymakers. 
During the 1980s and 1990s, cognitive models 
of teaching and learning were formulated and 
tested, and many small-scale efforts to transition 
from the predominant behaviorist models of 
instructional theory occurred. This research and 
development has implications for understanding 
best practice in the design of educational goals, 
implementation of instructional practices, 
and development of assessment techniques. 
Thus, instructional leadership requires a deep 
understanding of research and development. 
Many state and federal policies require school 
district instructional leadership to document the 
effectiveness or research-base undergirding local 
change strategies. This represents a new demand 
on those charged with district-wide and school-
level improvements. This monograph is designed 
for instructional leaders facing today’s research-
focused managerial demands.

A third and related change in the educational 
landscape is the No Child Left Behind Act of 2001 
(NCLB). The NCLB Act calls for a new level of 
Title I accountability by requiring each state 
to implement accountability systems covering 
all public schools and public school students. 
These systems must be based on rigorous state 
standards in mathematics, annual testing for all 
students in grades 3–8, and annual statewide 
progress objectives ensuring that all groups of 
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students reach established levels of mathematical 
proficiency within 12 years. Assessment findings 
and state progress objectives must be broken 
out by poverty, race, ethnicity, disability, and 
limited English proficiency to ensure that no 
group is left behind. School districts and schools 
that fail to make adequate yearly progress (AYP) 
toward statewide proficiency goals will, over time, 
be subject to improvement, corrective action, 
and restructuring measures aimed at getting 
them back on course to meet state standards. 
Schools that meet or exceed AYP objectives or 

close achievement gaps will be eligible for State 
Academic Achievement Awards.

Setting rigorous state standards and related 
accountability models is placing significant 
pressure on school districts to rethink past 
practice and to look for effective and sound 
strategies to support the teaching and learning 
of mathematics. This monograph is designed to 
assist teachers, administrators, and community 
supporters in their efforts to incorporate  
research-based strategies into the school 
mathematics program.

Infroduction2



How can mathematics educators be more 
productive teachers? How do we accelerate 
students’ learning of school mathematics? 
These are difficult questions. The teaching and 
learning process is embedded in a complex web 
of schools, school districts, communities, and 
state governance systems that each play a role in 
expanding students’ opportunity to learn and 
think about mathematics. Some have criticized the 
mathematics education community for failing to 
adequately articulate how access and opportunity 
to learn mathematics can be expanded to 
traditionally underserved students (Apple, 
1992; Hilliard, 1991; Meyer, 1991). The National 
Council of Teachers of Mathematics (NCTM) 
has recognized this criticism. Recent standards 
documents produced by the NCTM have called  
for a focus on equity. For example, the Principles 
and Standards for School Mathematics (NCTM, 
2000) stated:

The vision of equity in mathematics 
education challenges a pervasive societal 
belief in North America that only 
some students are capable of learning 
mathematics. This belief, in contrast to the 
equally pervasive view that all students 
can and should learn to read and write 
in English, leads to low expectations for 

too many students. Low expectations are 
especially problematic because students 
who live in poverty, students who are not 
native speakers of English, students with 
disabilities, females, and many nonwhite 
students have traditionally been far more 
likely than their counterparts in other 
demographic groups to be the victims of 
low expectations. Expectations must be 
raised—mathematics can and must be 
learned by all students. (pp. 12–13) 

High expectations for all students is a new 
challenge in school mathematics education. Past 
reform efforts in mathematics education were 
designed for more select groups. For example, 
in the post-Brown era, the “new math” reform 
movement sought to improve mathematics 
education in the United States, as it was thought 
that good scientific education was a vital 
component of a strong national defense program 
and a robust economy (Kliebard, 1987). Initiated 
in response to the launch of Sputnik by the Soviet 
Union, this mathematics reform effort designed 
to address the nation’s scientific crisis did little to 
address the problems of students of color in urban 
and rural areas of the United States (Garcia, 1995; 
Nieto, 1995; Tate, 1997). Many responsible for the 
reform effort stated that their programs should be 

Engineering a Change  
in Mathematics Education
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“Knowledge and productivity are like compound interest. Given two people of approximately the same 
ability and one person who works 10% more than the other, the latter will more than twice out produce the 
former. The more you know, the more you learn; the more you learn, the more you can do; the more you can 
do, the more the opportunity—it is very much like compound interest. I don’t want to give you a rate, but it 
is a very high rate. Given two people with exactly the same ability, the one person who manages day in and 
day out to get in one more hour of thinking will be tremendously more productive over a lifetime.”

–Richard Hamming1

1 This quote is taken from a transcription of the Bell Communications Research Seminar, March 7, 1986.



The focus of mathematics curriculum and 
pedagogy has evolved in a cyclic fashion. In the 
late 1960s and early 1970s, a different mathematics 
movement, “back to basics,” emerged, which 
focused primarily on elementary and middle 
schools (NCTM, 1980). This movement was a 
product of policy directives conceived to address 
equality of educational opportunity through 
compensatory education. The back-to-basics 
effort called for instruction in a narrow set of 
rudimentary mathematics procedures and facts, 
often to the exclusion of conceptually rich tasks 
and advanced mathematical ideas. 

Members of the National Council of 
Supervisors of Mathematics (NCSM) were 
concerned about the effect this would have 
on the teaching and learning of mathematics 

limited to “college-capable” students (Devault & 
Weaver, 1970; Kleibard, 1987; NCTM, 1959). The 
code words “college capable” were a signifier to the 
educational establishment that only a select few 
communities and students were appropriate for 
the reform activities. This is not to say that urban, 
rural, and poor communities were completely 
denied opportunities to participate in this reform 
effort. Instead, these opportunities were limited 
and insufficient for the curricular and pedagogical 
changes called for within the reform movement. 
Thus, for many students—particularly African 
American and Hispanic students—the late 1950s 
and 1960s are best characterized as an era of 
benign neglect with respect to opportunity  
to learn challenging, high-level mathematics  
(Tate, 1996). 
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appropriate to the needs in a modern society. 
An NCSM 1977 position paper urged that we 
move forward, not “back” to the basics. Not 
included in the back to basics movement were ten 
important areas of mathematics students would 
find essential as adults: problem solving; applying 
mathematics to everyday situations; alertness 
to reasonableness of results; estimation and 
approximation; appropriate computational skills; 
geometry; measurement; reading, interpreting, 
and constructing tables, charts and graphs; using 
mathematics to predict; and computer literacy. 
The NCSM position paper was widely influential 
in school mathematics circles; however, the back 
to basics movement had a pronounced impact on 
the learning opportunities of low-income urban 
schools (Strickland & Ascher, 1992). 

On the positive side, the basic skills effort 
resulted in limited gains on narrowly defined 
aspects of school mathematics for traditionally 
underserved student demographic groups 
(Secada, 1992). It served as an existence proof 
that when teachers and administrators agreed on 
and supported a common goal in mathematics, 
students would learn the content. However, as the 
vision of mathematics education has shifted from 
largely rudimentary notions to a more challenging 
standard, the limitations of past pedagogical 
and school organizational support systems are 
apparent. The National Research Council  
(2001) stated:

To many people, school mathematics 
is virtually a phenomenon of nature. 
It seems timeless, set in stone—hard 
to change and perhaps not needing to 
change. But the school mathematics 
education of yesterday, which had a 
practical basis, is no longer viable. Rote 
learning of arithmetic procedures no 
longer has the clear value it once had. The 
widespread availability of technological 
tools for computation means that people 
are less dependent on their own powers 
of computation. At the same time, people 
are much more exposed to numbers 
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2 In fact, Hurd (1997) argued the paradigmatic boundaries of science are shifting toward a science guided by the coaction of 
science and technology, perceived as an integrated system. Further, he indicated, many in the science community speculate 
that engineering education may be the best preparation for the natural sciences. Yet, this speculation suggests there are 
distinct paradigmatic differences.

and quantitative ideas and so need to 
deal with mathematics on a higher level 
than they did just 20 years ago. Too few 
U.S. students, however, leave elementary 
and middle school with adequate 
mathematical knowledge, skill, and 
confidence for anyone to be satisfied that 
all is well in school mathematics. (p. 407)

One response to the current state of 
affairs in school mathematics has been the 
rapid development and adoption of state-level 
mathematics standards. Typically, there is 
an accountability model associated with the 
mathematics content standards to provide 
indicators of student progress. However, situated 
in the time between the adoption of mathematics 
standards and the application of accountability 
models are important aspects of the educational 
process. There is an unstated assumption that 
standards and accountability models are only part 
of the solution strategy for school improvement 
in mathematics education. The assumption is that 
armed with quantitative data, local leadership—
teachers, mathematics coordinators and 
supervisors, principals, assistant superintendents, 
superintendents, and school board members—will 
proactively respond to data. The way in which 
local school leadership responds to system 
data has a profound consequence for students’ 
opportunity to learn. 

Hence, the focus of this monograph is 
largely devoted to supporting the improvement 
of mathematics teaching and learning and, 
ultimately, the performance of students on 
measures of mathematics achievement. This 
monograph is written with the hope that it will 
help the reader understand how research-based 
strategies can support the engineering of positive 
change to the structures supporting the teaching 
and learning of mathematics in educational 
settings. 

The engineer as a metaphor representing a 
change agent requires a brief explanation. To 
some, the engineer may appear to be synonymous 
with the scientist.2  The distinction between a 
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scientist and engineer is partially clarified by 
examining two activities related to the preparation 
of each professional—analysis and design. In 
science classes, students are required to answer 
problems, observe phenomena in lab settings, 
record observations, and perform calculations. 
This process is the essence of analysis. In 
engineering classes, the instruction often stresses 
the importance of design. The difference between 
analysis and design can be described in the 
following way: If only one solution to a problem 
exists, and discovering it merely entails putting 
together pieces of discrete information, the 
activity is probably analysis (Horenstein, 2002). 
In comparison, if more than one solution exists, 
and if determining a reasonable path demands 
being creative, making choices, performing tests, 
iterating, and evaluating, then the activity is 
design. Design often includes analysis; however, 
it also must involve at least one of these latter 
components. Horenstein (2002) offered the 
following example to further clarify the difference 
between analysis and design:

[A] remote-controlled buoy is located off 
the coast of California and is maintained 
by the U.S. National Oceanic and 
Atmospheric Administration (NOAA). 
It provides 24-hour data to mariners, the 
Coast Guard, and weather forecasters. 
Processing the data stream from this 
buoy, posting it on the Internet, and using 
information to forecast the weather are 
examples of analysis. Deciding how [his 
emphasis] to build the buoy so that it 
meets the needs of NOAA is an example 
of design. (p. 29)

Administrator and teacher leadership charged 
with addressing our nation’s school mathematics 

challenges must decide how to build effective 
programs. Clearly, there is more than one solution 
to our school mathematics problem, and designing 
appropriate solutions will require creativity, 
hard choices, performance tests, iterative action, 
and evaluation. Like engineers, mathematics 
educators must study access and opportunity-
to-learn issues in great depth, and then design 
an intervention—“learn to build.” In contrast, 
most scientists construct instruments to measure 
and study phenomena of interest—they “build 
to learn.” This monograph is dedicated to those 
interested in “learning to build” outstanding 
school mathematics programs.

The next two chapters provide an examination 
of the challenges facing school mathematics 
change agents. Chapter 2  documents changes 
in U.S. mathematics achievement by reviewing 
population trends and national achievement trend 
studies. A focus of this chapter is to determine 
achievement trends of various racial-ethnic 
and socioeconomic groups. The third chapter 
examines opportunity-to-learn (OTL) factors 
that have the potential to positively influence the 
learning of mathematics. The intent in this chapter 
is to offer possible building blocks to support 
the engineering of positive change in school 
mathematics and to review the work of some 
scholars who have designed school mathematics 
improvement models based on important OTL 
factors. The fourth chapter provides a closer look 
at research-based cases of successful mathematics 
programs. This chapter will highlight both 
classroom and organizational components that are 
present in high performing school mathematics 
programs. The fifth and final chapter is a brief 
review of the engineering perspective—learning  
to build—and its importance for school 
mathematics improvement.
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Learning to Build:   
The Problem Defined

C H A P T E R     2

Who are the children in the classrooms of 
today and the workforce of tomorrow? 

One of the goals of recent calls for 
mathematics reform is to accelerate the 
achievement levels of all students, and particularly 
students traditionally underserved in mathematics 
classrooms. For example, the National Education 
Goals Report: Building a Nation of Learners 
(National Education Goals Panel, 1995) called for 
the mathematics performance of all students at 
the elementary and secondary levels to increase 
significantly in every quartile and for the 
distribution of minority students in each quartile 
to more reflect the student population as a whole. 
Thus, it is important for the education community 
to understand population trends related to various 
demographic groups. 

The student race/ethnicity population trends 
have changed dramatically since the 1985 release 
of Mathematics and Science: Critical Filters for the 
Future. Figure 1 provides insight into this trend.

The information in Figure 1 requires 
additional explanation. The U.S. school-age 
population declined between 1980 and 1990 but 

became more diverse. The United States General 
Accounting Office (GAO, 1993) reported in 1990 
there were about 44.4 million school-age children 
(ages 5–17), a decline of more than 2.3 million, or 
5.8% since 1980. In 1992, the percentages of male 
and female students 5–18 years old enrolled in 
school were 51.4% and 48.6%, respectively  
(NSF, 1994). 

Changes in the racial-ethnic characteristics of 
the U.S. population have been a part of American 
life since the first European settlements. However, 
only in recent decades has the population in the 
United States become less, rather than more, 
White. The racial-ethnic diversity of the country 
is much greater now than at any previous period 
in history and seems on course to become 
progressively more diverse for some time to  
come (Riche & Pollard, 1992; Vernez, 1992).  
This diversity is reflected in recent trends of 
school-age children. 

During the 1980s, the White school-age 
population declined by more than 4 million 
children, or about 12%, and the number of 
African American children decreased by about 
250,000, or about 4%. In contrast, the number of 
Hispanic school-age children increased by 1.25 
million, or 57%, and the number of Asian children 
rose by over 600,000—an 87% increase. In 1990, 
White children made up less than 70% of the total 
school-age children, down from about 75% in 1980 
(GAO, 1993). 

As with the total school-age population, poor 
children became more racially and ethnically 
diverse. On the 1990 census, an individual 
or family would be categorized as poor if its 
annual before-tax cash income was below the 
corresponding poverty threshold for a family of 
that size. On the 1990 census, the poverty cutoff 

3 The terms Black and African American are used interchangeably in this document. 

Race/Ethnicity Fall 1986 Fall 2000

White, non-Hispanic 70.4% 61.2%

Black3, non-Hispanic 16.1% 17.2%

Hispanic 9.9% 16.3%

Asian or Pacific Islander 2.8% 4.1%

American Indian or Alaskan 
(native)

0.9% 1.2%

Figure 1    United States Student Race/Ethnicity 
1986 and 2000

Source: U.S. Department of Education (due to rounding may 
not add up to 100%).
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for a family of four was a 1989 income of $12,674. 
During the 1980s, the number of poor school-age 
children increased by 6% from about 7.2 million to 
7.6 million (GAO, 1993). The national poverty rate 
for school-age children rose from 15.3% to 17.1%. 
The number of poor Hispanic and Asian children 
grew by almost 600,000; while the number of 
poor White children declined, and the African 
American school-age population in poverty 
remained relatively constant. 

Despite the decline in poor White children, 
they continued to make up more than 40% of 
all poor school-age children in 1990, but this 
percentage changes dramatically by geographic 
region. White children represented over two-
thirds of all rural poor children and approximately 
one-third of the urban school-age population 
in poverty. Yet, regardless of region, African 
American children experienced the highest rates 
of school-age poverty, from almost 41% in rural 
areas to 34% in urban areas.

Three other traditionally underserved 
demographic groups—immigrant households, 
linguistically isolated (LI) households, and limited 
English proficiency (LEP) households—each 

4 Some definitions of terms are required here. LI children are in households where no persons aged 14 or older speak “only 
English” and no persons aged 14 or older who speak a language other than English speak English “very well.” There is no 
generally accepted definition of LEP. The term generally refers to students who have difficulty with speaking, writing, and/or 
reading English. The GAO (1993) defined LEP children as all persons aged five to 17 living in families whose members the 
Census reported as speaking English “well,” “not well,” or “not at all.” It should be noted that there is considerable variation 
in actual English-speaking ability among those classified in the “speaks English well” category. 

contributed about 5% of all school-age poverty 
children (GAO, 1993).4  Many of the children were 
categorized into more than one of these groups. 
When adjusted for overlap, these three groups 
totaled nearly 4 million children—more than 9% 
of all school-age children. More than 30% of these 
4 million children were also classified as poor.

Current demographic trends should be 
examined in light of mathematics achievement 
trends. As the demographic context of the United 
States changes rapidly, how well is our system 
of education performing in school mathematics 
across demographic groups?

Proficiency Trends in Mathematics 
The purpose of this section is to document 
changes in mathematics achievement by 
examining national trend studies to better 
understand the status of the United States 
education system. The discussion of national 
trend data is offered for two related reasons. 
The first reason is to clearly describe the student 
achievement problem. The trend studies reviewed 
in this section are in part a reflection of past 
practice in school mathematics. Thus, the 
mathematics trends are linked to limitations of 
the implemented curriculum, pedagogy, and 
school organizational strategies. A second reason 
to discuss national mathematics trend studies 
is to describe the measures used to determine 
mathematics achievement and to interpret the 
findings with a focus on engineering change. 

The trend studies should be examined with 
several concepts in mind. Miller (1995) argued 
there are three intertwined concepts that should 
be taken into consideration when attempting to 
build effective strategies to accelerate minority 
student performance on the basis of academic 
achievement data: 
 1. Generally, differences in academic 

achievement patterns among racial/ethnic 
groups reflect the fact that the variation 
in family resources is greater than the 
variation in school resources. His analysis of 
achievement patterns and resource allocations 
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confirms that most high-SES students receive 
several times more resources than most 
low-SES students receive, and much of this 
resource gap is a function of family resources 
rather than school resources.

 2. Demographic group educational advancement 
is an intergenerational process. From 
this perspective, education-related family 
resources are school resources that have 
accumulated across multiple generations. 
On average, investments in the current 
generation of African American, Hispanic, 
and American Indian children in the form of 
intergenerationally accrued education-relevant 
family resources are significantly less than 
comparable investments in White and Asian 
children.

 3. Educational attainment is a function of the 
quality of education-relevant opportunity 
structure over several generations. The pace of 
educational advancement depends on multiple 
generations of children attending good 
schools.

Miller (1995) stated the following about these 
three interrelated concepts:

Current variations in education-relevant 
family resources are heavily a function of 
variations in the historical opportunity 
structure experienced by generations of 
racial/ethnic groups. At the same time, the 
quality of the contemporary opportunity 
structure is crucial to the further 
evolution of family resource variation 
patterns. The nation’s ability to accelerate 
the intergenerational advancement process 
for minorities may be decisively shaped 
by its capacity to engineer [my emphasis] 
a more favorable opportunity structure 
for them in the years ahead as well as to 
supplement family and school resources 
for those groups at a level commensurate 
with their actual needs. (p. 339–40)

The first step in engineering change is 
problem identification. One goal of recent 
federal (NCLB Act) legislation and state 
policy focused on mathematics standards and 
accountability is to document the achievement 
level of traditionally underserved students’ yearly 
progress and to provide performance trends 

at a local level. The theory of action of most 
standards-based reform initiated at the state and 
federal level of governance suggests that armed 
with quantitative data on how students perform 
against standards, school leadership will react 
by making instructional changes required to 
improve student performance. According to the 
National Research Council (1999[a]), “Research 
on early implementation of standards-based 
systems shows, however, that many schools lack an 
understanding of the changes that are needed and 
lack the capacity to make them. The link between 
assessment and instruction needs to be made 
strong and explicit” (p. 5). 

Why do schools lack an understanding of 
administrative changes that are needed to improve 
student performance on specifically designated 
tests? One or all of the following problems may 
hamper many school leaders:
 • Failure to disaggregate and organize data 

by race, class, language proficiency, or other 
relevant demographic variables

 • Failure to align local content standards with 
external performance standards associated 
with the designated testing system

 • Failure to align the testing cycle and fiscal 
planning

One reason many schools lack the insight 
to make appropriate instructional changes 
is related to how they organize and analyze 
data. While many states, schools districts, and 
schools disaggregate data to help provide a 
more accurate picture of student performance, 
many educational leaders do not have insight 
into student mathematical performance by 
demographic group. This is problematic in that 
student achievement patterns and trends are 
potentially overlooked; thus, opportunities for 
instructional intervention are lost, and future 
student performance is hampered. Further, lack 
of clarity about the relationship between content 
standards and performance standards can result 
in the implementation of curriculum that is 
not consistent with outcome measures being 
employed (NRC, 1999[a]). Thus, any discussion of 
achievement trends should be coupled with a clear 
description of what is being measured. Moreover, 
the discussion of trends must occur in a timeframe 
that allows for immediate intervention. The timing 
of tests and the administrative planning cycle 
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further complicate the possibility of intervention. 
In many states, the test results are produced  
after fiscal planning has taken place in school 
districts. This disconnect makes it difficult to  
plan appropriate interventions for the upcoming 
school year. 

Racial-Ethnic Trends5  
Rapid growth of the school-age population and 
changing discourses about racial categories has 
made it more difficult to classify racial-ethnic, 
immigrant, and language groups. For example, 
within the Hispanic, Asian, and African American 
populations, distinct subgroups have formed, 
and many have requested unique demographic 
characterizations. Most national trend analysis of 
mathematics performance is not conducted at this 
level of detail. This limitation stated a review of 
this literature remains instructive for evaluating 
national trend direction in school mathematics. 

NAEP Trends. The National Assessment of 
Educational Progress (NAEP) trend assessment 
is largely a basic skills examination. To measure 
performance trends, subsets of the same items 
have been a part of successive assessments. Some 
items have been included in each examination. 
This practice means that findings from nine 
NAEP trend assessments provide insight into how 
students’ mathematics proficiency has changed 
from 1973–1999. NAEP mathematics proficiency 

scores are available for 1973, 1978, 1982, 1986, 
1990, 1992, 1994, 1996, 1999, and 2003.6  Tests are 
administered to a sampling of students across the 
United States at ages 9, 13, and 17. The scale scores, 
which range from 0 to 500, provide a common 
metric for determining levels of proficiency across 
assessments and demographic characteristics. 
NAEP scores reflect student performance at five 
levels on the scale:
 • Level 150—Basic Arithmetic Facts
 • Level 200—Beginning Skills and 

Understanding
 • Level 250—Basic Operations and Beginning 

Problem Solving
 • Level 300—Moderately Complex Procedures 

and Reasoning
 • Level 350—Multi-step Problem Solving and 

Algebra

The performance-level categories were 
developed for the 1973 assessment and have 
continued to be used through the 1999 assessment. 
However, the language associated with these 
categories has evolved and changed over this time 
period. Thus, it is important for the “engineer” 
charged with making decisions about curriculum, 
teaching, and other relevant educational inputs to 
be aware that this trend analysis may use language 
consistent with today’s standards-based discourse 
(NCTM, 1989; 2000). However, the test items may 

5 The trend studies reviewed in this monograph are limited to select national-level analyses that provide insight into student 
mathematics performance across demographic groups. National studies that did not disaggregate data by demographic 
group are not included. Moreover, no state-level trend studies or international studies (TIMMS) are included. The period 
from 1985 to 1999 is a particular focus of this trend analysis summary. This report continues the 1985 effort of DeAnna 
Banks Beane.

6 The 2003 NAEP scores are not included in this discussion. At the time of publication, these findings were not included in the 
trend study.
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Race/ 
Ethnicity

Year Age 9 Age 13 Age 17

White 1999 238.8 (0.9) 283.1 (0.8) 314.8 (1.1)

1996 236.9 (1.0) 281.2 (0.9) 313.4 (1.4)

1994 236.8 (1.0) 280.8 (0.9) 312.3 (1.1)

1992 235.1 (0.8)* 278.9 (0.9)* 311.9 (0.8)

1990 235.2 (0.8)* 276.3 (1.1)* 309.5 (1.0)*

1986 226.9 (1.1)* 273.6 (1.3)* 307.5 (1.0)*

1982 224.0 (1.1)* 274.4 (1.0)* 303.7 (0.9)

1978 224.1 (0.9)* 271.6 (0.8)* 305.9 (0.9)*

1973 225.0 (1.0)* 274.0 (0.9)* 310.0 (1.1)*

Black 1999 210.9 (1.6) 251.0 (2.6) 283.3 (1.5)

1996 211.6 (1.4) 252.1 (1.3) 286.4 (1.7)

1994 212.1 (1.6) 251.5 (3.5) 285.5 (1.8)

1992 208.0 (2.0) 250.2 (1.9) 285.8 (2.2)

1990 208.4 (2.2) 249.1 (2.3) 288.5 (2.8)

1986 201.6 (1.6)* 249.2 (2.3) 278.6 (2.1)

1982 194.9 (1.6)* 240.4 (1.6)* 271.8 (1.2)*

1978 192.4 (1.1)* 229.6 (1.9)* 268.4 (1.3)*

1973 190.0 (1.8)* 228.0 (1.9) 270.0 (1.3)

Hispanic 1999 212.9 (1.9) 259.2 (1.7) 292.7 (2.5)

1996 214.7 (1.7) 255.7 (1.6) 292.0 (2.1)

1994 209.9 (2.3) 256.0 (1.9) 290.8 (3.7)

1992 211.9 (2.3) 259.3 (1.8) 292.2 (2.6)

1990 213.8 (2.1) 254.6 (1.8) 283.5 (2.9)*

1986 205.4 (2.1)* 254.3 (2.9) 283.1 (2.9)*

1982 204.0 (1.3)* 252.4 (1.7)* 276.7 (1.8)*

1978 202.9 (2.2)* 238.0 (2.0)* 276.3 (2.3)*

1973 202.0 (2.4)* 239.0 (2.2)* 277.0 (2.2)*

Figure 2    NAEP Trends in Average Mathematics 
Scale Scores by Race/Ethnicity

  Standard errors of the scale scores appear in parentheses. 
*Significantly different from 1999. Source: NAEP 1999 Trends 
  in Academic Progress, NCES (2000).

not reflect the problem solving and reasoning 
descriptions found in more recent standards 
documents and state content and performance 
assessment documents. With this limitation noted, 
the NAEP trend analysis is a valuable gauge of 
student performance progress over time. Figure 2 
provides a summary of NAEP racial-ethnic trends 
in mathematics performance from 1973–1999.

The racial-ethnic mathematics scores 
as measured by the NAEP long-term trend 
assessment improved for all racial-ethnic 
subgroups from 1973–1999. The scores for Black 
and Hispanic students are less consistent than 
White students and demonstrate more abrupt 
changes. However, the samples of Black and 
Hispanic students are smaller than that of White 
students. Smaller samples typically have more 
variability. Overall, the NAEP trend assessment 
indicates that all three racial-ethnic groups have 
experienced positive growth in mathematics 
proficiency. However, no group by age 17 was 
performing on average at the highest student 
performance level. This finding is a concern 
given that the performance levels are more 
closely aligned with a basic skills mathematics 
curriculum.

NELS Trends. The National Education 
Longitudinal Study of 1988 (NELS:88) included 
a nationally representative sample of over 10,000 
students, followed from eighth grade (1988) 
through twelfth grade (1992) in nearly 800 high 
schools nationwide. The schools in the study 
include public, Catholic, and other private 
schools and represent a range of enrollment, 
religious affiliations, geographic settings, school 
social composition, as well as various levels of 
restructuring activity (Newmann & Wehlage, 
1995). The NELS:88 mathematics tests were 
constructed to measure both high-level and low-
level skills at three points in time: 1988, 1990, 
and 1992. Thus, students in the sample were 
assessed in mathematics at grades 8, 10, and 12, 
respectively. The difficulty levels of the first and 
second follow-up mathematics tests were adapted 
to the students’ performance levels in the previous 
administration. There were 40 items on each 
mathematics test. Eighty-one items were used in 
all forms of the test. The different forms of the test 
were equated using item response theory (IRT) so 
the various forms of the test could be equated with 
a common metric. Units on these tests refer to 
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the number of items answered correctly, after the 
IRT procedures were used to score the tests and to 
assign all students on the same scale.

Green and colleagues (1995) reported findings 
from the NELS:88 second follow-up data set that 
included mathematics achievement results of high 
school seniors in 1992. The 1992 NELS:88 second 
follow-up examination items represent items 
typically characterized as traditional, basic skills 
curriculum. Five levels of mathematics proficiency 
were defined in the study (see Appendix A, 
Table A1). Green et al. (1995) found that African 
American and Hispanic students were less likely 
than White and Asian students to demonstrate 
advanced proficiencies (Levels 4 and 5) on the 
standardized test of mathematics (12% and 20% 
compared with 39% and 45%, respectively). 
Further, 50% of the African American and 42% of 
Hispanic students were categorized at Level 1 or 
below. In comparison, 14% of the Asian and 21% 
of White students performed at Level 1 or below.

Rasinski, Ingels, Rock, and Pollack (1993) 
compared mathematics scores for sophomores 
in the 1980 High School and Beyond (HS& B) 
study and the 1990 NELS:88 (a follow-up study 
conducted in 1990) by using an IRT scaling 
procedure that linked the two assessment 
instruments. The HS&B sophomore cohort 
mathematics test administered in 1980 consisted 
of 38 test items and required students to complete 
the examination in 21 minutes. The test items 
were quantitative comparisons that required 
students to mark which of two quantities is 
greater, indicate their equality, or note a lack of 
sufficient information to determine a relationship 
between the quantities. The 1990 NELS:88 first 
follow-up mathematics test contained 40 items 
to be completed in 30 minutes. The test items 
assessed advanced skills of comprehension 
and simple mathematical application skills. 
The items included geometric figures, graphs, 
word problems, and quantitative comparisons 
(as in the HS&B). Consistent with the HS&B, a 
multiple-choice format was used in this follow-
up test. To compare the performance of the 1980 
HS&B sophomore cohort and the 1990 NELS:88 
sophomores, 16 quantitative comparisons from 
the HS&B were included in the 1990 NELS:88 
mathematics assessment. Thus, the findings from 
this study should be viewed as a comparative 
analysis of a narrow scope of the mathematics 
content. The statistical findings are listed in 

Appendix A (Table A2). All racial and ethnic 
groups with the exception of Asian students made 
statistically significant gains in mathematics 
performance on the test. In each administration 
of the test, Asian students on average were the 
highest performing of the four demographic 
groups. African American and Hispanic students 
gained more than Asian and White students in 
this comparison.

Racial-Ethnic Trend Analysis Summary. The NAEP 
trend analysis indicates improvement between 
1973 and 1999 in all racial-ethnic groups at each 
age level. During this period, African American 
and Hispanic students made larger gains than 
did White students; thus, the performance gap 
on this assessment between White students 
and the other two demographic groups closed 
slightly. The 1980 HS&B and the 1990 NELS:88 
sophomore cohort study reported a similar result: 
African Americans, Hispanics, and Whites made 
statistically significant gains in mathematics 
achievement. Further, the gains made by African 
American and Hispanic students were larger than 
those of White students.

The NAEP trend analysis and the 1990 
NELS:88 sophomore cohort study indicate that 
the mathematics performance on basic skills items 
over the past 20 years has improved for the largest 
racial-ethnic demographic groups in the United 
States. However, no racial-ethnic demographic 
group has consistently produced scores that are 
aligned with the highest levels of performance 
being measured by the NAEP trend analysis.

Socio-Economic Trends 
The literature on social class is a product of 
multiple academic domains and traditions. Most 
notions of social class build on the economic 
roots of class and to varying degrees link class to 
political and cultural indicators. The traditional 
practice in school mathematics achievement data 
is to organize a hierarchy of classes—working 
class, lower-middle class, middle class, and so 
on. This hierarchical framework objectifies high, 
middle, and low positions on some metric, such 
as socioeconomic status (SES) where “Parents’ 
Education” or “Family Income” is a proxy for 
class. The limitations of this practice are discussed 
elsewhere (Knapp and Woolverton, 1995; Grant 
and Sleeter, 1986; Secada, 1992). However, for 
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the purpose of understanding SES trends in 
mathematics achievement, a proxy like “Parents’ 
Education” is instructive. One major limitation 
of this proxy—and others like it—is that school 
administrators cannot intervene directly on  
this variable. 

NAEP trends. From 1978 to 1999, the National 
Assessment of Educational Progress provided 
trends in average mathematics proficiency by the 
highest level of education that students reported 
for either parent. A summary of the trends in 
average mathematics scale scores for students 
at three age levels by parents’ highest level of 
education is provided in Appendix A (see Table 
A3). Students at all three ages who indicated their 
parents had less than a high school education have 
exhibited overall gains in average mathematics 
proficiency since 1978 across all ages. For students 
who reported their parents’ highest education 
level was high school graduation, the average 
proficiency trend has generally improved at 
ages 9 and 17. The performance of 13-year-olds 
was relatively the same during this time period. 
For students with a parent who graduated from 
college, only 9-year-olds had an average score in 
1999 that was significantly higher than in 1978. 

NELS Trends. Rasinski’s and colleagues’ (1993) 
comparison of sophomore cohorts from the 1980 
HS&B study and the 1990 NELS:88 follow-up 
study documented a consistent pattern of positive 
gains within SES groups during this period and 
a difference that is related to student SES. Four 
SES categories were created by framing the 
socioeconomic status composite into SES high 
quartile, SES high middle half, SES low middle 
half, and SES low quartile. The statistical results 
are presented in Appendix A (see Table A4). The 
findings appear to suggest that the highest quartile 
improved more than the lowest quartile; however, 
approximately 12% of the lowest quartile in 1990 
was missing math test scores, whereas nearly all 
the 1980 lowest quartile reported mathematics 
scores. The researchers speculated that the lowest 
quartile gain could be biased downward as a 
result of the missing data. The missing data make 

any interpretation of differential gain between 
quartiles difficult to make. However, it is clear 
that within each data set—i.e., HS&B 1980 and 
1990 NELS:88 Follow-up—SES status is related to 
mathematics performance.

Green et al. (1995) reported findings from 
the 1992 NELS:88 second follow-up survey of 
seniors. In one analysis, Green and colleagues 
compared achievement across racial and ethnic 
groups controlling for SES. The mathematics 
proficiency of Asian, Hispanics, African 
Americans, and Whites, controlling for SES 
is presented in Appendix A (see Table A5). 
The two lowest proficiency levels—below basic 
and level 1—and the two highest proficiency 
levels—levels 4 and 5—are contrasted. The data 
indicate that achievement differences exist even 
when the effects of socioeconomic status are held 
constant. For example, this study reported that 
significant differences existed between Whites’ 
and African Americans’ test performance within 
each SES category. Also, there were significant 
differences between White and Hispanic seniors 
in the high SES group. The percentage differences 
among racial and ethnic groups were generally 
larger in the higher SES groups. There was one 
exception: differences in Asian and White seniors’ 
performance were not significant.

SES Trend Analysis Summary. The studies 
reviewed in this chapter should be considered 
with population trends in mind. Clearly, poverty 
is more severely concentrated among Hispanic 
and African American children than it is among 
Whites. Across the various studies of mathematics 
achievement, a strong relationship between 
SES and mathematics achievement was present. 
These studies indicate a need to improve the 
mathematics achievement of low-SES students as 
a whole, and even more pressing is the need to 
raise the mathematics achievement of low-SES 
minority students. In light of these findings and 
population trends, the need for intervention in the 
two geographic regions with the highest poverty 
levels—urban and rural communities— 
is apparent. 



A close look at the achievement trends 
reviewed in the prior chapter suggests that student 
demographic background is strongly related to 
mathematics achievement. This is important to 
know; however, demographic background is out of 
the control of the teacher, instructional supervisor, 
school board member, and other school 
personnel. An educator interested in improved 
student performance in mathematics must 
focus on the variables associated with learning 
mathematics that can be influenced by specific 
action and intervention. One response to current 
student underperformance is to examine how 
opportunity-to-learn variables might inform the 
design of active intervention on student learning. 

Opportunity-to-Learn (OTL) as an important 
construct influencing—and possibly explaining—
the impact of instruction, was introduced during 
the 1960s. Carroll (1963) included OTL as one 
of five critical constructs in his model of school 
learning. He defined OTL as the amount of 
time allocated to the learner for the learning of 
a specific task. If, for instance, the task assigned 
a student is to understand the concept of place 
value, opportunity-to-learn is simply the amount 
of time the student has available to learn what 
place value is.

In Carroll’s (1963) model, opportunity-to-
learn is contrasted with the amount of time the 
student requires to learn a principle or concept. 
This latter construct is largely related to the 
student’s aptitude in a concept domain. Thus, 

whereas teachers have some control over the 
time available for student learning, they have 
little control over the time required for student 
learning. Carroll also contrasted OTL with the 
amount of time the student actually spends 
engaged in the learning process. The latter 
variable, often referred to as time-on-task or 
engaged time, is thought to be affected by the 
perseverance of the student and the quality of the 
teaching. In Carroll’s model, OTL represents the 
maximum value for engaged time.

In contrast to Carroll, Husén (1967) organized 
OTL in terms of the relationship between the 
mathematics content taught to the student and 
mathematics content assessed by achievement 
tests. In Husén’s model, OTL is the overlap of 
mathematics taught and mathematics tested. 
Simply stated, the greater the overlap, the greater 
the opportunity-to-learn.7

Scholars, school leaders, and government 
agencies have used various combinations of the 
Carroll and Husén models to design their own 
frameworks of opportunity-to-learn (National 
Governors’ Association, 1993; Robitaille & 
Travers, 1992; Winfield, 1987, 1993). However, 
Stevens (1993a) identified four variables related to 
teacher instructional practice and student learning 
that consistently emerge in these interpretations. 
In this monograph, two of the variables are 
combined; thus, the following three variables form 
an opportunity-to-learn framework:
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Opportunity to Learn  
Factors: Time, Quality,  
and Design

C H A P T E R    3

7 Carroll’s (1963) and Husén’s (1967) opportunity-to-learn models have two important differences. First, whereas 
Carroll’s model describes OTL as an instructional variable (under the control of teachers), Husén’s model frames OTL 
as a measurement variable. Second, Carroll describes OTL as a continuous variable, whereas Husén designed OTL as a 
dichotomous variable. The most important concern from Carroll’s perspective is how much time the student has to learn a 
specific concept. The most important concern from Husén’s perspective is whether or not a student has been provided with 
quality instruction relative to the concepts included on achievement tests. 
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 1. Content exposure and coverage variables 
measure the amount of time students spend 
on a topic (time-on-task) and the depth of 
instruction provided. These variables also 
measure whether or not students cover 
critical subject matter for a specific grade or 
discipline.

 2. Content emphasis variables affect the 
selection of topics within the implemented 
curriculum and the selection of students for 
basic skills instruction or for higher order 
skills instruction.

 3. Quality of instructional delivery variables 
reveals how classroom pedagogical strategies 
affect students’ academic achievement.

The purpose of these OTL variables is to 
determine whether or not students are provided 
sufficient access to learn the mathematics 
curriculum expected for their grade level and age. 
According to Stevens (1993b), the OTL variables 
are “deceptively simple” (p. 234). In general, 
research in this area examines one variable at a 
time; however, the OTL conceptual framework 
developed by Stevens (1993a, 1993b) encourages 
teachers, administrators, and researchers to 
examine the interaction of all three variables 
simultaneously (see Figure 3).

This theoretical framework will remain a 
theory, rather than an active change strategy 
for most teachers, unless their work is part of 
a coherent “design” that allows them to take 
advantage of what is known about opportunity to 
learn. Two very important variables that emerge 
from the OTL literature are time and quality. Time 
and quality are critical variables because they 

can be altered with interventions. Thus, time and 
quality variables derived from the OTL literature 
form a basis for the construction of school design 
strategies aimed to improve learning. For purposes 
of management and leadership, design is critical. 

Think of “design” as an innovative portfolio 
of strategies that will provide students appropriate 
content exposure, content coverage, content 
emphasis, and quality instructional delivery. 
The term design is used here to describe how 
school personnel can construct and package 
opportunities to learn. Those responsible for 
the education of children need to be challenged 
to accept a greater level of responsibility for 
how teaching and learning is organized. Every 
educator—teachers, principals, superintendents, 
and school board members—should have a clear 
understanding of how the school system and, 
more specifically, how each school is designed to 
improve student performance in mathematics. 
Too many educators fail to see the limitation of 
longstanding design principles. Still others fail to 
recognize existing design principles. Some may 
question the need for a transparent opportunity-
to-learn design. However, not having a design is a 
design for failure. Each state has a measurement 
system to gauge student performance. These 
systems are transparent. Similarly, every school 
and school district should have a learning design 
that is transparent, open to ongoing monitoring, 
assessment, and revision. 

The appropriate design and management 
of OTL variables is central to the improvement 
of school mathematics for many students. The 
remainder of this chapter will be devoted to the 
role of time, quality, and design as they relate 

Variable/Related Study Definition

Content exposure and coverage 
(Leinhardt & Seewald, 1981; Leinhardt, 1983; Brophy & 
Good, 1986; Winfield, 1987, 1993; Suter, 2000)

Teacher arranges class so that there is time-on-task for 
students. Teacher arranges adequate time for students to 
learn subject matter and to cover adequately a specific topic. 
Teacher arranges the curriculum to overlap test content.

Content emphasis 
(Floden, Porter, Schmidt, Freeman, & Schwille, 1981; 
LeMahieu & Leinhardt, 1985; McDonnell, Burstein, 
Catterall, Ormseth, & Moody, 1990; Oakes, 1990; Stevens 
1993b; Porter, 1989, 1993; Suter, 2000)

Teacher chooses content from the curriculum to teach. 
Teacher chooses the dominant level to teach the curriculum 
(recall, higher order skills). Teacher chooses which skills to 
teach and which skills to highlight with different groups of 
students (ability grouping and tracking).

Quality of instructional delivery 
(Brophy & Good, 1986; Stevenson & Stigler, 1992;  
Stevens, 1993b)

Teacher uses different pedagogical strategies to meet  
the learner’s needs. Teacher has understanding of the 
subject matter.

Figure 3    Opportunity to Learn: A Theoretical Framework Derived from International Assessments and 
Research Studies to Examine Students’ Access to Intended Curriculum



to student OTL with traditionally underserved 
student groups.

Time and School Mathematics
Policies and practices that influence content 
coverage and time on task in school mathematics 
are pivotal to the improvement of student 
performance in the domain. The purpose of 
studying these opportunity-to-learn variables 
is to determine whether or not students are 
provided sufficient time to learn the mathematics 
curriculum expected for their grade level and age. 
One very basic principle related to time should be 
transparent in every classroom. Significant time 
should be dedicated to mathematics instruction 
each school day. Further, appropriate time 
should be allotted to ensure students develop 
understanding of key concepts and procedures.8  
Many factors can influence whether or not this 
basic principle is followed. In this section, several 
factors related to time and school mathematics 
will be reviewed.

Course-Taking. Two of the most powerful 
predictors of school mathematics achievement 
in large-scale assessments of mathematics have 
been (a) increased time on task in high-level 
mathematics and (b) the number of courses taken 
in mathematics. Generally, these two predictors 
are interrelated. Evidence indicates that African 
American, Hispanic, and low-SES students are less 
likely to be enrolled in higher-level mathematics 
courses than middle-class White students 
(Secada, 1992). Further, White students on 
national assessments of mathematics achievement 
consistently outperform African American and 
Hispanic students. Thus, it is not shocking that 
a positive relationship between mathematics 
achievement and course taking exists across 
measurement systems (e.g., NAEP, SAT, and ACT).

Course-taking options in the United States 
are organized in a technology that takes on 
two forms—curricular and ability tracking. 
Many comprehensive high schools offer a wide 
range of mathematics courses linked to various 
work-related opportunities. No student could 

experience all of the coursework, so schools design 
technologies to regulate the selection process. To 
this end, students in most high schools are sorted 
into a curricular track involving a specific course 
sequence and, ultimately, different opportunities 
to learn mathematics. Generally, three curricular 
tracks—college preparation, vocational, and 
general education—are offered within most 
traditional high schools. It is clear that the college 
preparation track has higher status and provides 
greater opportunity to learn more demanding 
mathematics. Curricular tracking has serious 
implications for student opportunity to learn 
mathematics. 

Similarly, ability tracking is a technology used 
to sort students into curriculum experiences.9  
This mechanism for sorting provides different 
levels of instruction to students across two tracks 
based on perceived ability. This version of sorting 
is more difficult to recognize because course 
labeling can disguise the practice. For example, 
schools may offer two different courses in 
geometry. Both may have the same title; however, 
the mathematics covered in each course may 
differ in dramatic ways. Another sorting strategy 
is to offer students different entry points into 
the college-preparatory coursework at different 
times (e.g., freshmen year versus junior year). 
The organizational structure of the school may 
recognize many tracks or just a few; schools may 
or may not link tracks to a block of courses or to 
mathematics only; and schools may have loosely 
or tightly coupled curricular and ability tracking. 
Additionally, students may or may not have the 
option to move across tracks. The opportunity 
to negotiate new curricular possibilities is an 
important equity consideration.

Tracking is a serious challenge to mathematics 
achievement and opportunities to learn 
mathematics. In theory, tracking as a technology 
is designed to benefit all students. However, 
evidence strongly suggests that this goal is not 
being accomplished (Hoffer, Rasinski, and Moore, 
1995). Instead, research studies have indicated that 
even when tracking systems have positive effects, 
those effects are more closely associated with those 
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8 Sufficient and appropriate time to learn the mathematics curriculum should be a data-driven decision. Certain mathematical 
concepts are more difficult to understand. System-wide data can inform the process as well as classroom-based assessments. 
Both assessment formats are informative with respect to determining the amount of time to devote to a concept.

9 I use the term ability grouping because this is consistent with the literature on tracking. However, a more appropriate term is 
perceived ability. 



students assigned to high-status tracks (Oakes, 
1990; Rock and Pollack, 1995). 

One possible solution to the differential 
opportunities to learn across tracks is to constrain 
the curriculum options in mathematics at the 
secondary level. Currently, African Americans 
and Hispanic students are over-represented in 
vocational programs and low-track options. Lee, 
Croninger, and Smith (1997) found that students 
learn more mathematics in schools that offer 
them a narrow curriculum composed of college-
preparatory academic courses. This research is 
suggestive, rather than definitive. 

A word of caution: “Course-taking patterns 
are an important indicator of system quality.” It 
is quite possible that many students are enrolled 
in low-track mathematics courses due in part to 
prior experiences in elementary and middle school 
mathematics. Merely mandating a narrower 
curriculum consisting of college prep mathematics 
will not address the endemic quality problem 
of the preK–8 mathematics program. Thus, it is 
imperative that curriculum constraints toward  
the college prep model at the secondary level  
occur in tandem with a close examination of the  
preK–8 effort. 

One state-level change strategy to improve 
elementary and middle school mathematics is 
to align the mathematics curriculum with state 
assessments. This model has implications for 
time and school mathematics. The next section 
examines this strategy. 

Assessment Practices. The mathematics 
curriculum in many school districts is aligned 
with mathematics standards adopted or derived 
from state or national curricular frameworks. 
The standards-based reform of mathematics 
education is often part of a larger systemic change 
effort that includes: academic standards in the 
core disciplines by grade, holding all students 
to the same standards, statewide assessments 
closely linked to the standards, accountability 
systems with varying levels of consequences for 
results, computerized feedback systems, and data 
for continuous improvement (NRC, 1999[a]). 
State-level assessment systems and most national 
testing proposals call for students to be tested in 
mathematics and reading (NRC, 1999 [b]). This 
practice has implications for content coverage and 
time on task in mathematics classrooms in urban 
school districts and other school systems with 

large percentages of traditionally underserved 
students.

Students’ opportunities to learn mathematics 
are influenced by the assessment policies of 
the school district. Assessment policy often 
influences the nature and pedagogy in a 
classroom. The influence of standardized 
tests—and, more recently, state-mandated 
testing—is arguably greater in high-minority 
classrooms. In a nationwide survey, teachers of 
high-minority classrooms reported test-specific 
instructional practices more often than teachers 
of low-minority classrooms (STEEP, 1992). For 
example, in high-minority classrooms, about 
60% of the teachers reported teaching test-taking 
skills, teaching topics known to be on the test, 
increasing emphasis on tested topics, and starting 
test preparation more than a month before the 
examination. These practices were reported 
significantly less often in low-minority classrooms. 
Moreover, mathematics teachers with high-
minority classes indicated more pressure from 
school district officials to improve test scores than 
teachers with low-minority classes.

Today, school districts across the country use 
testing technology as a mechanism to measure 
school and student progress. However, the role 
of testing technology is much greater than 
measurement concerns. Tests do change or at 
least influence teaching behavior. Many districts 
are ignoring best practice related to assessment 
and school mathematics. Two recommendations 
related to school mathematics and student 
assessment performance are listed below:
 1. Design a curriculum, select quality 

instructional materials, align curriculum and 
instructional materials, and then use aligned 
instructional materials all year. Testing 
systems are intended to measure the quality 
of a school’s instructional program. Avoid 
spending significant time on test preparation. 
If the combination of the curriculum, 
instructional materials, and teaching fall short 
of school district goals, then these factors must 
be reviewed and improved upon.

 2. Use state and classroom assessment data as 
a way to build a solid instructional program 
linked directly to student thinking in the 
content domain. 
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Fiscal Adequacy. Limited course-taking options 
and narrow assessment practices are compounded 
by problems of fiscal inadequacy and resource 
distribution. The Council of Great City Schools 
[CGCS](1992) calculated that the average-per-
pupil expenditure in 1990–91 was $5,200 in large 
urban school districts compared with $6,073 
in suburban public school systems. Although 
both types of school systems allocated about 
62% of their budgets to classroom instruction, 
urban schools spent about $506 less per child 
on instruction. While this study does not use 
current data related to fiscal resources, it reflects 
a growing fiscal disparity between urban school 
systems and some suburban systems, and 
illustrates an important point. How money is 
spent should be examined carefully. For example, 
the Commissioner of Education of New York State 
reported,  “The more advantaged districts (in New 
York state, my addition) spend over $3,000 more 
per student and pay their teachers $20,000 more 
annually.  Students in more advantaged districts 
are substantially more likely than students in less 
advantaged districts to perform with distinction 
on Regents examinations, and they are more 
than twice as likely to plan to attend four-year 
colleges” (2002, pp. vi–vii).10   The CGCS (2003) 
calculated that the New York Public Schools 
would need $12,537 per pupil to have the resources 
equivalent to the highest achieving school districts 
in the state.11  The fiscal support undergirding 
instructional practice has implications for 
meeting new and more challenging demands in 
mathematics education.12

Over the past decade, the average-per-pupil 
expenditure has constantly increased for urban 
and suburban school districts. Yet, as Cohen, 
Raudenbush, and Ball (2003) propose, rather than 
focus on fiscal resources as the center of research 
and policymaking, teaching and learning should 
be centered, and questions of adequate fiscal 
resources should derive from carefully planned 
instructional programs. The call for “Mathematics 
for All” or “Algebra for All” associated with many 
state content standards proclamations has placed 
new demands on urban school systems to prepare 

larger numbers of students in content traditionally 
reserved for a small percentage of students. Never 
before has there been a greater need to extend the 
amount of time students have with mathematics 
content that is aligned to state curriculum guides 
and appropriate tests. 

Unfortunately, the old saying “time is money” 
is directly applicable to the implementation of 
design strategies capable of providing students 
more time on task in mathematics. Some 
considerations related to extending time for 
students in mathematics are listed below:
 • Preschool availability
 • Early intervention programs for low 

performing schools
 • Extended school day opportunities
 • After- and before-school tutorial programs
 • Saturday school
 • Summer school enrichment for all students 

(not just remediation)
 • Community college/university programs
 • Longer school day and/or expanded year
 • Enrichment and mentoring programs 
 • More individualized or small group 

instruction

Each of the strategies listed is integral to 
a standards-based approach to educational 
policymaking. These strategies require a sound 
vision that is directly linked to fiscal policy. 
State standards provide an opportunity to plan 
for success. A simple planning strategy includes 
(a) adopting a set of mathematics standards, 
(b) identifying resources needed to achieve the 
standards (including time-related strategies), 
(c) formulating a long-term plan that aligns the 
standards and resources, (d) developing the plan 
before spending money, and (e) adopting the 
necessary structural changes to maximize cost-
effectiveness (e.g., Clune, 1997). Planning for more 
engaged time in mathematics is a purposeful act 
that should be aligned with fiscal management. A 
school district’s portfolio of mathematics practices 
and interventions should be clearly aligned to 
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10 See http://www.emsc.nysed.gov/irts/655report/2002/home.html (cited August 2, 2004).
11 See http://www.cgcs.org/pdfs/NYBrief.pdf (cited August 2, 2004) to review this analysis. 
12 Additional reports by the Council of Great City Schools suggest the need for system leaders to continue examining how their 

systems use resources on instructional components (see e.g., http://www.cgcs.org/taskforce/finance3.html).



uniform content goals and fiscal management. Too 
often, districts fail to produce aligned practices 
and fiscal policy. Yet, a portfolio of aligned 
practices, interventions, and fiscal policy is the 
essence of a district’s learning design.

Quality and School Mathematics
It should be obvious to most observers that the call 
for more demanding standards in mathematics is 
a signal for not only what students must know but 
also what teachers must understand and school 
systems must support. High standards in school 
mathematics demand quality instruction and sup-
porting infrastructure. The purpose of this section 
is to examine quality factors that influence math-
ematics instruction. 

The OTL literature defines quality as 
classroom pedagogical strategies that affect 
students’ academic achievement. In this case, 
quality is defined as those pedagogical strategies 
that positively influence student achievement in 
school mathematics. Before discussing quality 
factors, a baseline review detailing what is typical 
with respect to mathematics pedagogy is helpful. 

Traditionally, mathematics pedagogy has 
emphasized whole-class lectures with teachers 
modeling one strategy for solving a problem and 
students passively listening to the explanation. 
Generally, the lecture is followed by students 
working alone on a large set of problems that 

reflect the lecture topic (Fey, 1981; Porter, 1989; 
Stodolsky, 1988). The purpose of the lecture and 
problem set is to prepare students to produce 
correct responses to narrowly defined problems. 
This pedagogical strategy is often coupled 
with curricular or ability grouping, with many 
African American and Hispanic students selected 
to participate in compensatory mathematics 
programs that focus on the mastery of low-level 
computational skills (Strickland & Ascher, 1992). 
These phenomena are so “normal” in many 
schools, they have become cultural artifacts. 
The achievement trends as a result of this model 
of instruction were reviewed earlier in this 
monograph. 

In contrast, high-quality mathematics 
programs generally deviate in important ways 
from the “normal” approaches to mathematics 
instruction and classroom practice. A comparison 
of mathematics teachers in higher- and lower-
performing schools conducted by the North 
Central Regional Educational Laboratory 
(NCREL, 2000) revealed important quality 
factors related to instruction. The findings are 
summarized in Figure 4.

It is important to note that the NCREL 
findings must be understood in light of the 
centrality of students’ mathematical reasoning in 
higher-performing schools. Higher-performing 
schools and teachers provide a learning 
environment that supports sustained engagement 
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Higher-Performing Schools Lower-Performing Schools

Teachers and students participate in two-way 
conversations about mathematical ideas.

Conversations tend to be one-way: The teachers tell 
information to students or look for answers and move on.

Classes exhibit the characteristics of learning 
communities. There are norms in place so students  
and teachers are learning together.

Classes have few learning community characteristics. 
Individuals are more disconnected.

Teachers push for mathematical meaning behind  
the task.

Teachers lead math tasks; however, meaning-oriented 
discussion is missing.

Teachers have high expectations that all will learn.  
They review concepts often, explain things thoroughly, 
invite student thinking, and assess student competence, 
and re-teach when necessary.

The expectation is that there will be other sources of help 
that will fill in gaps for struggling students.

Teachers build continuity in the mathematical domain 
from day to day.

Little continuity is built into mathematical content from  
day to day.

Students are comfortable with classroom routines and 
expectations and take initiative in their progress. (They 
know where to find enrichment materials when finished 
with an assignment and get started on their own.)

Classroom routines are teacher initiated rather than student 
initiated. Lots of teacher reminding of expectations.

Figure 4    



on rigorous mathematical tasks. Teaching as 
characterized in the higher-performing schools is 
complex and demanding. In contrast, the teaching 
in lower-performing schools is routine and 
limited with respect to teacher-student discourse 
patterns. Further, instructional practices in lower-
performing schools do not center on students’ 
mathematical understandings and thinking. 
The characteristics found in teachers working in 
higher-performing schools can be supported in 
other schools by administrative planning  
and instructional leadership with the following 
specific actions:
 • Provide professional development that 

prepares teachers to focus on mathematical 
understandings and reasoning.

 • Provide ongoing professional development 
focused on content, effective instruction, and 
student thinking in the content domain.

 • Design a curriculum that provides sufficient 
exposure to difficult concepts. 

 • Develop programs to address the impact  
of student/teacher mobility in low- 
performing schools.

Each of these quality factors will be discussed 
in greater detail. The focus of the discussion 
will center on why these factors are key support 
mechanisms for achieving the quality teaching 
characteristics indicated in the NCREL study.

Quality Professional Development. What are 
the “best practices” related to the professional 
development of mathematics teachers? Every year, 
school districts sponsor thousands of professional 
learning opportunities for teachers. There has 
been a gradual shift in thinking about professional 
development in many sectors including education 
and the corporate world (Meister, 1998). A 
summary of recent shifts in emphasis related to 
professional development is provided in Figure 5.

Are shifts in thinking about professional 
development (as reflected in Figure 5) consistent 
with research in mathematics education and 
teacher learning? What works? 

Garet and colleagues (2001) conducted 
the first large-scale empirical comparison of 
effects of different characteristics of professional 
development on teachers’ learning. The study used 
a national probability sample of 1,027 mathematics 
and science teachers. The results confirm and 
extend the literature on “best practice” in several 

ways. The study confirms past literature in that 
the research indicates sustained and intensive 
professional development is more likely to 
influence teacher learning, as reported by teachers, 
than shorter professional development. Also, the 
research indicates that professional development 
that focuses on academic work (content), provides 
teachers opportunities for “hands-on” work (active 
learning), and is integrated into the daily life of 
the school (coherence) is more likely to result in 
enhanced knowledge and skills. 

Garet and associates (2001) extend what 
is known about professional development and 
confirm speculation in the following manner:

Our results provide support for previous 
speculation about the importance of 
collective participation and the coherence 
of professional development activities. 
Activities that are linked to teachers’ other 
experiences, aligned with other reform 
efforts, and encouraging of professional 
communication among teachers appear to 
support change in teaching practice, even 
after the effects of enhanced knowledge 
and skills are taken into account. Such 
coherence has been hypothesized as 
important, but with little direct empirical 
support in the literature to date. Similarly 
our data provide empirical support that 
the collective participation of groups of 
teachers from the same school, subject, 
or grade is related both to coherence and 
active learning opportunities, which 
in turn are related to improvements in 
teacher knowledge and skill and changes 
in classroom practice. (p. 936)

This study suggests that if those who are 
concerned about education are serious about 
improving the quality of teaching in mathematics 
classrooms, they need to support and invest in 
professional learning opportunities for teachers 
that foster enhanced instructional practice. 
A major challenge to the kind of professional 
development outlined in this study is cost.  
It is very important that sufficient resources 
be in place to support a quality professional 
development model. 

Quality Curriculum. The need for a demanding 
mathematics curriculum aligned with high-
quality instructional materials is intuitively 
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obvious. Unfortunately, there is often confusion 
about the relationship between curriculum and 
instructional materials. Many systems purchase 
instructional materials and then treat them like 
a curriculum. Teachers strive to teach the book 
from cover to cover with little reflection about the 
curriculum. In other school districts, curriculum 
guides are designed, distributed at one-day 
workshops, placed in school storage, and never 
used again. 

There is serious need for quality district-level 
curriculum guides in mathematics. In many 
states, the state-level curriculum framework offers 
little guidance related to focus; instead, litanies 
of discrete topics are listed. At the school-district 
level, curriculum quality can be achieved if the 
following recommendations for developing and 
implementing guides are taken seriously:
 • Focus on mastery objectives only.
 • Reduce the scope of coverage.
 • Provide and support the development of more 

cognitively demanding enrichment materials.
 • Allow for variations in completion time and 

instructional strategy.
 • Provide quality instructional materials to 

schools in a timely fashion.
 • Educate principals by focusing their learning 

opportunities on the relationship between the 
curriculum guides, district achievement goals, 
and test materials.

In the world of high-stakes testing, there is 
tremendous pressure, real or perceived, to teach 
to the test. A high-quality curriculum guide 
that demonstrates an alignment between the 
instructional materials (including the enrichment 
materials) and assessment tasks is more likely to 
result in students’ experiencing a coherent and 
cognitively demanding mathematics classroom 
than pure reliance on test guidelines.   

Mobility and Mathematics. How do schools 
address the challenges to quality mathematics 
instruction presented by student and teacher 
mobility in low-performing schools? High 
mobility causes a great deal of stress on campus 
officials attempting to serve these students. In the 
context of high mobility, a quality curriculum 
guide that standardizes the curriculum and 
instructional materials is vital. While schools and 
classes may deviate on pacing, teachers have a 
reasonable opportunity to meet individual needs 
if the curriculum guide has narrowed the coverage 
and focused on mastery objectives. Further, it is 
very important that individual student data is 
transmissible to the new school setting. This will 
give the teacher an opportunity to construct a 
data-driven program of study for the student.

Teacher mobility in low-performing schools 
also is a major problem. Often, new teachers to a 
system are sent to low-performing schools. The 
result is not surprising. These teachers either 
leave the profession or get seniority and transfer 
to another school. This pattern is consistent and 
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Old Training Paradigm Learning Paradigm

Central Office Location On Demand—Anywhere

Upgrade Math Skills Content Build Core Workplace Competencies

Lecture Methodology Action Learning

Individual Teachers Audience Intact Teams of Teachers, Principals, other 
Staff

External University 
Professor/Consultants

Faculty Internal Senior-level District Staff and a 
Consortium of University Professors and 
Consultants

One Time Service Frequency Continuous Learning Process

Build Teacher’s Inventory of Skills Goal Solve Real Education Issues and Improve 
Classroom Teaching

Figure 5    Professional Development Paradigm Shift from Staff Training to Learning

Source: Adapted from Meister 1998.



endemic. The result: low-performing schools are 
constantly staffed by less experienced teachers 
and, in many situations, by teachers with 
emergency teaching certificates. 

It is time for new models of operating in 
these schools. Questions related to how to 
retain teachers in low-performing schools 
require empirical evidence. Here are a couple of 
speculations on the issue. Retention of teachers in 
challenging settings may be linked to instructional 
leadership. Good principals create learning 
communities that support teachers and students. 

Another potential strategy involves the 
recruitment process. Perhaps cohorts of well-
established teachers can be recruited with 
incentives to low-performing schools. The 
emphasis is on cohort. The goal in this strategy is 
to embed a core group of excellent teachers in the 
school setting to influence and mentor the less 
experienced teachers. 

Clearly, it is a disservice to new teachers and 
students to place novice teachers in the most 
challenging settings. Remedies to the mobility 
problem will require major rethinking in the 
areas of human resource management and fiscal 
management. Moreover, mobility issues are often 
compounded with other system challenges like 
cultural factors and student language background.

Culture and Mathematics Learning. Today, many 
calls for equity in mathematics education borrow 
from opportunity-to-learn constructs found in 
national and international testing programs. In 
fact, OTL constructs are foundational in this 
monograph. These constructs frame equity largely 
as the overlap of content taught and content tested. 
The overlap of content taught and content tested is 
a serious policy concern. Moreover, opportunity-
to-learn constructs have additional explanatory 
power if aligned with the cultural factors that 
influence students’ mathematics learning (Tate, 
1995). Research suggests that equity-related 
policies in mathematics education should carefully 
consider incorporating recommendations found 
in the Professional Standards for Teaching 
Mathematics (NCTM, 1991), which call for 
mathematics pedagogy to build on (1) how 
students’ linguistic, ethnic, racial, gender, and 
socioeconomic backgrounds influence their 
learning; (2) the role of mathematics in society 
and culture; (3) the contribution of various 
cultures to the advancement of mathematics; 

(4) the relationship of school mathematics to 
other subjects; and (5) the realistic application 
of mathematics to authentic contexts (see e.g., 
Ladson-Billings, 1994; Moses and Cobb, 2001; 
Nelson-Barber and Estrin, 1995; Meyerson, 2002; 
Rousseau and Tate, 2003; Secada, 1996). 

The first NCTM recommendation calls 
for understanding how demographic group 
membership may be linked to the learning of 
mathematics. This recommendation is consistent 
with No Child Left Behind legislation that requires 
a national accounting of student performance in 
mathematics by demographic group. However, 
gathering achievement data by demographic 
group is very different than reflecting on race-
related achievement patterns. Rousseau and Tate 
(2003) found that mathematics teachers in their 
study were reluctant to reflect on race and student 
performance in mathematics. Instead, some 
teachers in their study indicated they were color-
blind and did not notice race or attend to matters 
of race-related patterns of student achievement. 
Further, many of the teachers were unwilling to 
link poor student performance to their teaching or 
other school-related factors. There was a tendency 
by the teachers to blame the students and their 
families. This kind of practice represents a unique 
challenge for instructional leadership attempting 
to engineer school mathematics improvement. The 
challenge suggests a need for professional practice 
among teachers and school leaders that differs 
radically from traditional formats. The need for 
study groups composed of teachers and school 
leadership is clear. These groups must foster trust 
and openly communicate about data and students; 
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in particular, the challenge of discussing race and 
culture must be met (e.g., Tatum, 1992). 

There are other cultural factors in school 
mathematics related to quality design and school 
change. Many of these cultural factors largely 
deal with the aim of school mathematics. More 
specifically, the nature and extent the school 
mathematics curriculum is linked to the liberal 
arts tradition of reasoning and inquiry in 
contexts broader than the problems and concepts 
found in the discipline of mathematics. Should 
school mathematics include investigations 
of how mathematics is used in society and 
culture? For example, how relevant is political 
numeracy? Mathematics is part of many aspects 
of the democracy and can inform the reasoning 
associated with policy formation and policy 
analysis. Is this appropriate for middle school or 
high school students? 

Some teachers have embarked on student-led 
integrated problem-solving investigations that 
include mathematics, statistics, legal analysis, 
multimedia techniques, scientific method, and 
connections to other disciplines (Tate, 1995). The 
approach is consistent with calls for authenticity 
in mathematics instruction (Meyerson, 2002). 
This strategy is designed to build on students’ 
interest and to provide a liberal arts approach to 
the middle school and high school experience. 
However, the liberal arts approach may not be 
consistent with the current demands of high-
stakes testing environments. Any disconnect 
between the liberal arts perspective of schooling 
and mathematics education is worthy of 
discussion by teachers, instructional leaders  
and policymakers. 

Similarly, for some elementary instructional 
leaders providing an integrated learning 
experience that connects mathematics, science, 
and reading is desirable. This kind of integrated 
approach has many merits including efficient use 
of time and building on best practice in early 
childhood education (Bredekamp and Copple, 
1997). If the culture of testing, specifically test 
preparation activities, substitute for real learning 
experiences and best practice, then long-term 
skills like student reasoning ability may  
be sacrificed. 

Language and Mathematics Learning. In a policy 
analysis of urban students acquiring English and 
learning mathematics in the context of reform, 

Secada (1996) raised the following two questions: 
“Should their [urban school, my addition] efforts at 
reforming school mathematics specifically address 
the status of students acquiring English? Or should 
urban schools assume that these students’ needs will 
be addressed under the broader aegis of reform?” 
(p. 422). Secada argued that failure to consider the 
specific learning needs of students acquiring English 
would be a mistake. He maintains it might be useful 
for educators to examine common learning processes 
that cut across language learning and mathematics 
learning. Two potential areas of analyses include 
(1) psychological processes that are common to 
understanding language and mathematics and (2) 
sociolinguistic and cultural processes that support 
the creation of discourse communities in school 
including how sense making takes place and is 
validated in these communities (e.g., Kinstch & 
Greeno, 1985; Lampert, 1990; Stanic, 1990). Secada 
(1996) described a potential scope of work for 
educators related to bilingual education and school 
mathematics. Secada (1996) stated:

Newly developing models for teaching 
mathematics should be scrutinized for 
their applicability to bilingual learners 
and adapted as necessary. The limitations 
of evolving ways to teach mathematics 
(Lampert, 1990) is a reason to question, but 
not reject, the developing visions for teaching 
mathematics (NCTM, 1991). Maybe, with 
some adjustments—specifically inviting these 
students to add their thoughts, encouraging 
them to use their native languages and asking 
others to translate, slowing down the fast-
pace tempo of the classroom, creating an 
atmosphere in which language variation in 
the community of discourse is an accepted 
fact of life—these methods can apply to 
bilingual learners. (p. 440)

Secada’s remarks concerning bilingual learners 
and school mathematics focused on the importance 
of modifying instructional time and appropriate 
instructional accommodations—both critical OTL 
variables. Time and quality factors permeate the 
discussion of the research-based cases of the  
next chapter. 

 



standards.  Massell (1994) reported 41 states have 
adopted mathematics standards that at least in 
part are consistent with the NCTM standard 
series. A brief history of this series is warranted.

In 1980, NCTM, a professional organization 
of mathematics teachers, supervisors, and college 
professors, released An Agenda for Action, which 
described a 10-year reform process. A central goal 
of An Agenda for Action was to move the focus 
of school mathematics from a strictly basic skills 
curriculum to a more balanced approach that 
included more demanding mathematics content 
and appropriate pedagogy to implement this 
content. Subsequently, but not as a direct result 
of An Agenda for Action, NCTM sponsored the 
development of the Curriculum and Evaluation 
Standards for School Mathematics (1989), the 
Professional Standards For Teaching Mathematics 
(1991), the Assessment Standards for School 
Mathematics (1995), and most recently, Principles 
and Standards for School Mathematics (2000). 
These documents were a product of extensive 
literature reviews and a series of technical reports 
that described key themes and ideas in school 
mathematics. This series of reform documents 
and the movement to reform school mathematics 
are important from an equity perspective. Past 
reform efforts have failed to significantly improve 
opportunity to learn mathematics for African 
American, Hispanic, and low-SES students (Tate, 
1996). Thus, a close review of more recent reform 
efforts is part of the process of learning to build. 

In every mathematics reform effort, significant 
time should be devoted to information gathering 
and group study of other similar change efforts. 
Learn as much as possible about related design. 
The intent of this chapter is to review a select set of 
research-based cases to serve as a model for your 
future information-gathering activities. 

The group of studies reviewed in this chapter 
were included for three reasons. First, the studies 
were part of large multi-year projects focused on 
classroom-based research. These studies provide 
insight into how time, quality, and design interact 
to produce positive academic results in school 
mathematics. In each of the projects reviewed, 
student performance in mathematics improved 
over time. Second, each project at some point 
examined equity-related concerns, and looked 
to intervene in school settings where student 
proficiency in mathematics was underdeveloped. 
Finally, each project was included because 
participants engaged in an effort to reform school 
mathematics in a manner that was consistent 
with the teaching practices and/or curricular 
goals found in the National Council of Teachers 
of Mathematics (NCTM) reform documents or 
state/local mathematics standards. Moreover, the 
three projects included comprehensive research 
and evaluation components including data on 
student advancement and other educationally 
relevant indicators of progress.  The research and 
evaluation aspect of these projects are important 
because of the rapid advancements of state 

Research-Based Cases of School Mathematics Reform24

C H A P T E R    4

Research-Based  
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13 Additional information about these cases can be found in Tate and Rousseau (2002) and the January 1996 issue of Urban 
Education. There is some overlap in the evidence presented in this monograph and the Tate and Rousseau article. Adaption 
of this work is with permission from the Handbook of International Research in Mathematics Education, Lawrence Erlbaum 
Publishers. The cases are presented in this monograph to highlight the importance of time and quality factors. 
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However, it has been successfully implemented in 
classroom settings with diverse student groups. 

For example, Carey, Fennema, Carpenter, 
and Franke (1995) described CGI classrooms 
in a predominantly African American school 
district. Twenty-two first-grade teachers from 11 
schools in Prince George’s County, Maryland, 
an urban school setting bordering Washington, 
D.C., participated in a research project organized 
to evaluate the efficacy of CGI with African 
American students. The student demographics 
in the classrooms of the study exceeded 70% 
African American. Further, seven of the 11 
schools participated in Chapter 1, a federally 
funded program of Title 1 of the Elementary 
and Secondary Act, a good indicator of high 
concentrations of low-income students in a 
school. The teachers who participated in the study 
attended a two-week summer in-service program 
that was followed with five full-day professional 
development days offered during the academic 
year. The researchers documented a change in the 
teachers’ implemented mathematics curriculum, 
with a greater focus on problem solving beyond 
that typically associated with the first-grade 
curriculum. The teachers also displayed an ability 
to take advantage of student thinking about 
important mathematical ideas, ultimately building 
on student understanding to establish new 
knowledge of school mathematics.

Villasenor and Kepner (1991) reported on the 
implementation of CGI in a minority context. The 
study was carried out with 12 treatment classes 
and 12 control classes in which the percentage of 
non-White populations ranged from 57% to 99%. 
The CGI group performed significantly better on 
a 14-item word problem posttest, an interview on 
word problems, and an interview on number facts. 
The CGI students also used advanced strategies 
significantly more often than non-CGI students on 
both problem solving and number facts. Peterson 
and colleagues (1991) argued that “Villasenor’s 
results are important because they provide 
concrete evidence for the effectiveness of the CGI 
approach with a disadvantaged population of 
students” (p.78).

The CGI studies suggest that an important 
set of quality factors related to mathematics 
instruction are how well teachers (1) understand 
the structure of a specific mathematical concept, 
(2) understand students’ thinking about the 
particular mathematical idea, and (3) implement 

Cognitively Guided Instruction (CGI)
Researchers at the University of Wisconsin 
developed Cognitively Guided Instruction (CGI). 
The CGI foundation was in part established on 
Carpenter and Moser’s (1983) analysis of young 
children’s learning of addition and subtraction. 
Subsequently, other research was conducted to 
understand how teacher knowledge of children’s 
thinking would affect teachers’ pedagogical 
actions and student learning (Carpenter, Fennema, 
Peterson, Cary, 1988; Carpenter, Fennema, 
Peterson, Chiang, & Loef, 1989). This research 
suggested that knowledge extracted from studies 
of learners’ thinking can be used by teachers to 
strategically influence students’ learning. The 
CGI research program supports the argument 
that knowledge of students’ thinking, when 
integrated, robust, and a part of the established 
curriculum, can affect the teaching and learning 
of mathematics (Fennema & Franke, 1992). 
Carpenter and colleagues (1999) described the 
CGI design process and model as follows:

Our research has been cyclic. We started 
with explicit knowledge about the 
development of children’s mathematical 
thinking, which we used as a context to 
study teachers’ knowledge of students’ 
mathematical thinking and the way 
teachers might use knowledge of students’ 
thinking in making instructional 
decisions. We found that although 
teachers had a great deal of intuitive 
knowledge about children’s’ mathematical 
thinking, it is fragmented and, as a 
consequence, generally did not play an 
important role in most teachers’ decision 
making. If teachers were to be expected 
to plan instruction based on knowledge 
of students’ thinking, they need some 
coherent basis for making instructional 
decisions…. We designed CGI to help 
teachers construct conceptual maps of the 
development of children’s mathematical 
thinking in specific content domains.  
(p. 105)

CGI is not associated with particular 
instructional materials. Moreover, CGI does 
not have an explicit equity component, nor is 
it targeted at a particular group of students. 



instructional strategies that build on this 
knowledge of student thinking. As a set, these 
quality factors are powerful indicators of good 
instruction with a strong relationship to student 
learning and performance on outcome measures. 

Project IMPACT 
Project IMPACT “is a school-based teacher 
enhancement model for elementary (K–5) 
mathematics instruction designed to foster 
student understanding and to support teacher 
change in predominantly minority schools” 
(Campbell, 1996, p. 449). There were six schools 
involved in the original study (three treatment 
and three control). The model involved (1) a 
summer in-service program, (2) an on-site 
mathematics specialist in each school, (3) 
manipulative resources for each classroom, and 
(4) teacher planning and instructional problem 
solving during a common grade-level planning 
period each week. The focus of the model was 
on instructional approaches consistent with a 
cognitive perspective on learning, emphasizing 
interaction and collaboration rather than the 
typical direct instruction approach. 

Unlike CGI, Project IMPACT focused 
specifically on teaching for understanding in 
urban schools. Thus, content addressing “teaching 
mathematics in culturally diverse classrooms” 
was included in the program’s summer in-
service. Supported by campus-based mathematics 
specialists, instructional change occurred in 
most treatment classrooms, particularly where 
the instructional leadership by the principal 
encouraged and embraced the reform process. 
The students in these schools were assessed in 
the middle and at the end of each school year. 
Campbell (1996) summarized the results: 

The influence of the IMPACT treatment on 
student achievement was not immediate. 
The students in the IMPACT treatment 
schools did not evidence statistically 
significant higher achievement, as 
compared to the students in the 
comparable-site schools, until the middle 
of second grade; however, once established, 
this mathematics differential continued 
through second and third grade. (p. 463) 

White (1997), in her dissertation, examined 
the nature of questioning in four third-grade 
classrooms both before and after the teachers went 
through the Project IMPACT summer in-service 
program. The study documented the question-
response pattern, the cognitive level of the 
question (low or high), and the race and gender 
of the students who responded. White found that 
students’ educational experiences, as reflected 
in classroom questioning, differed both between 
and, in some cases, within classes. There were two 
teachers, Ms. Davis and Ms. Tyler, who were fairly 
equitable in their distribution of questions.14  “They 
posed questions to all students across questioning 
patterns and cognitive levels” (White, 1997,  
p. 300). 

In Ms. Atkins’ class, however, the distribution 
was more skewed. Overall, females answered 
the majority of the questions. Yet, a look at the 
different cognitive levels reveals racial patterns 
as well. White and Asian females answered most 
of the high level questions. Black and Hispanic 
female students were asked a relatively low 
number of high-level questions. According to 
White (1997), the origin of this disparity lies in 
Ms. Atkins’ perceptions of students’ academic 
ability and her own discomfort with mathematics. 
Ms. Atkins wanted to ask high-level questions, but 
her own lack of understanding caused her to call 
only on students whom she thought would give the 
correct answer. Thus, only the students perceived 
to be of high ability were selected to answer high-
level questions. A similar pattern of focusing only 
on the students who were perceived to have the 
greatest mathematical understanding was found in 
the class of the fourth teacher, Ms. Smith.  

This very detailed study of question and 
response patterns is important for at least two 
reasons. First, it documents a partial success story 
for Project IMPACT in terms of improving equity 
in classrooms. Two of the four teachers appeared 
to change their practices as a result of their 
participation in the initial IMPACT summer in-
service and ongoing campus level assistance. Both 
Ms. Davis and Ms. Tyler were more equitable in 
their distribution of questions after the in-service 
than they had been before. 

This study is also important because it 
suggests the need to look closely at teachers’ 
explanations for their actions in order to more 
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fully understand what is happening in the 
classroom. For example, the case of Ms. Atkins 
indicates that teachers’ inequitable actions can 
originate from a variety of sources, including 
inadequate content knowledge. 

Project IMPACT suggests that another quality 
indicator related to mathematics instruction is 
the relationship between teachers’ knowledge of 
mathematics, teachers’ understanding of student 
thinking about mathematics, and teachers’ 
understanding of race/gender interactions in 
classroom settings. Project IMPACT is consistent 
with other research programs that indicate the 
importance of treating cultural background as a 
resource for learning (Rousseau and Tate, 2003). 
For example, Knapp (1995) found that teachers 
in high-poverty schools who placed the greatest 
emphasis on meaning in their mathematics 
instruction made two significant shifts in their 
thinking about learners. First, they viewed 
learners as active participants in learning, and 
second, the teachers used cultural dimensions of 
instruction to sustain engaged time with academic 
work. This also is an important lesson from 
Project IMPACT. 

QUASAR 
QUASAR is described as “an educational reform 
project aimed at fostering and studying the 
development and implementation of enhanced 

mathematics instructional programs for students 
attending middle schools in economically 
disadvantaged communities” (Silver & Stein, 1996, 
p. 476). One purpose of the project was to help 
students develop a meaningful understanding 
of mathematical ideas through engagement with 
challenging mathematical tasks. The QUASAR 
project supported teachers and administrators in 
six urban middle schools. Each school site worked 
with a resource partner—typically, mathematics 
educators from local universities—to improve 
the school’s mathematics instructional program 
with a focus on mathematical understanding, 
thinking, reasoning, and problem solving. The 
site teams operated independently in the design 
and implementation of its curriculum plan, 
professional development, and other features of 
its instructional program. There were regular 
interactions among representatives from all 
QUASAR sites. Moreover, each site-based team 
benefited from financial support, technical 
assistance, and advice from the QUASAR staff 
housed at the Learning Research and Development 
Center at the University of Pittsburgh.

Silver and Stein (1996) describe three 
different analyses used to assess the effectiveness 
of instruction in QUASAR sites. Unlike the 
CGI and IMPACT studies, there was no control 
group in the QUASAR study. One method used 
to determine the impact of QUASAR was the 
examination of changes in student performance 



over time. The results from the first three years of 
the project indicated that “students developed an 
increased capacity for mathematical reasoning, 
problem solving, and communication during 
that time period” (Silver & Stein, 1996, p. 505). 
A second method of evaluation used a variety of 
tasks from the National Assessment of Educational 
Progress (NAEP) as pseudo-control groups (Silver 
& Lane, 1995). The QUASAR students were given 
items from the 1992 eighth-grade NAEP. The 
results were compared to those of NAEP’s national 
sample and disadvantaged urban sample. The 
findings from the analysis of student performance 
on the nine open-ended tasks were very 
informative about the effectiveness of QUASAR. 
QUASAR students performed at least as well as the 
national sample on seven of the nine tasks. Silver 
and Lane (1995) noted that this is an important 
result, in light of the fact that the national sample 
had significantly outperformed the disadvantaged 
urban sample on all nine tasks. They stated:

The findings clearly suggest that the 
mathematics performance gap between 
more and less affluent students has 
been significantly reduced for students 
attending the QUASAR schools. Thus, the 
performance of QUASAR’s students is far 
greater than would have been expected, 
given their demographic similarity to 
NAEP’s disadvantaged urban sample, 
and one can infer that the instruction 
at QUASAR has a beneficial impact on 
students’ mathematical performance. 
(Silver and Lane, p. 62) 

A third method of evaluation examined 
outcomes other than achievement, considering 
whether QUASAR instruction was linked 
to increased access and success in algebra 
coursework. Silver and Stein (1996) reported 
that students from QUASAR schools were both 
qualifying for and passing algebra in ninth grade 
at substantially higher rates than before QUASAR. 

The QUASAR project reinforces the 
importance of students’ engaged time with 
cognitively demanding mathematical concepts. 
Sustained engaged time with quality mathematics 
tasks resulted in improved student performance 
on a wide range of indicators. 

Research Case Summary. These research cases 
have three overlapping themes worthy of note. 
First, high-quality mathematics was at the 
center of each effort. More specifically, each 
program called for mathematics instruction using 
mathematical tasks not typically associated with 
the lower educational expectations often found 
in large urban and rural school districts. In each 
program, mathematical proficiency consisted of a 
balance between conceptual understanding and 
procedural proficiency. Too often instruction is 
based on extreme positions, rather than a balanced 
approach with increasing cognitive demand.

A second common feature of each program 
was the important role of classroom-based 
assessment designed to better understand student 
thinking about mathematical ideas. These studies 
of mathematics teaching support the idea that 
teachers’ knowledge of students’ reasoning when 
it is integrated with a balanced mathematics 
curriculum can positively affect the teaching and 
learning of traditionally underserved students. 
The assessments used in the research-based cases 
of mathematics reform were designed to support 
the learning process and to identify areas in 
which further instruction is needed. The measures 
included direct observations of children during 
classroom activities, evaluation of student work, 
and asking questions in class. The portfolio of 
measures in the research-based case studies 
differed from the measures used to gauge national 
trends. The latter measures are designed to inform 
the public about trends in student performance 
or the effectiveness of large-scale educational 
programs. The research-based cases included 
standardized tests, selected NAEP items, and 
classroom-based activities. 

A third common feature of each case was the 
presence of a strong mathematics professional 
development program. Two key features of these 
programs were teacher learning opportunities in 
the areas of school mathematics content and how 
children’s mathematical knowledge develops in 
the content domains, including what knowledge 
students were likely to bring with them to school.

These three common themes represent 
important quality factors. They reinforce 
how the combination of quality curriculum, 
cognitive-based assessment tools, and integrated 
professional development are central to school 
mathematics design.
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In this monograph, it has been argued that 
calls for rigorous mathematics standards 
preK–12 require thoughtful action and planning. 
Moreover, the building blocks for engineering 
mathematical progress in any school are time, 
quality, and design. These three pillars of OTL 
are foundational for the improvement of the 
teaching and learning of mathematics in school 
settings. There are many paths for organizing and 
implementing change in school mathematics; 
however, the failure to consider time and quality 
factors and design issues carefully is a recipe 
for lost educational opportunity. Jere Confrey 
and colleagues at the Systemic Research Center 
for Education in Mathematics, Science, and 
Technology (SYRCE) designed Figure 6 to serve as 
a conceptual model to inform the organizational 
design of mathematics teaching and learning  
in schools. 

 Figure 6 is included because it serves as a 
reminder of key opportunity-to-learn factors and 
how they interact in our systems of education. 
As an engineer, it is important to keep in mind a 
broader conceptual model of school change. This 
is especially important in light of the day-to-day 
realities of teaching, administration, and political 
challenges that face educators. The many events 
and distractions that occur in schools and school 
districts, such as leadership changes and financial 
shortfalls, only become real problems when they 
influence these three foundational pillars of 
learning and teaching. Unfortunately, instability 
and interim leadership are rife everywhere 
in public schooling. Recall, engineers “learn 
to build.” Both learning and building require 
stability, long-term, and insightful leadership. The 
building process for the engineer is supported by 
the following model development sequence:

It’s Time to Design
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Figure 6
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 • Model Construction
 • Model Exploration
 • Model Application
 • Model Revision

Models are a language for describing patterns, 
patterns that can be observed and tested in the 
real world of schools. Thus, the process of model 
development emphasizes understanding school 
factors that influence opportunity to learn 
mathematics. The model development sequence 
requires additional clarification. 

Model Construction. OTL requires a clear vision 
and set of learner goals. Many school districts 
accomplish this part of model construction by 
adopting all or portions of state mathematics 
standards and in combination with local system 
objectives create specific district-level goals for 
what all students should know and be able to 
do. District mathematics goals are important 
quality indicators for teachers, administrators, 
parents, students, and the broader community. 
Thus, multiple communication strategies for 
each constituency should be part of the model’s 
design. Each constituency should be provided 
samples of student work. The work should 
exemplify system-wide expectations and illustrate 
student work products that meet the district’s 
mathematics standards. Setting high standards 
and communicating a clear vision are only part of 
the model construction process. Ensuring that all 
students have access to a quality curriculum also is 
part of the process.

There are a number of steps that are vital 
to initiating a quality curriculum. Each school 
should design an academic plan based on local 
mathematics standards and an associated 
accountability structure. The process includes: 
 1. Communicating the importance of consistent 

application of curricular programs and 
standards

 2. Eliminating courses and academic experiences 
lacking the rigor of mathematics standards or 
inconsistent with developmentally appropriate 
mathematics practice

 3. Providing adequate time in the curricular 
design to focus on core subjects

 4. Building a timely framework for monitoring 
student progress using data

 5. Providing teacher and administrator 

professional development focused on 
classroom strategies for assessing student 
learning of mathematics standards

Vision, curriculum quality and accountability 
systems are vital to constructing a model. 
However, policy and resource alignment also 
contribute to a comprehensive model design.

It is difficult to imagine a sustained change 
strategy that does not include front-end alignment 
of school policies and resources to support 
rigorous standards. For example, ongoing 
mathematics professional development should 
be part of the model construction process. In 
addition, effective student support programs 
should be prepared and ready to implement in 
response to updates on student assessments and 
mobility information. Too often, responses to 
these types of data are not part of the upfront 
planning process. Consequently, many school 
districts find themselves engaged in triage 
mode, piecing together programs in real-time, 
rather than implementing planned data-
driven interventions. Resources aligned with 
an appropriate vision, quality curriculum, and 
accountability systems are part of the technical 
core of the model construction process. The 
technical core is vitally important, but not enough. 
Ultimately, people explore the model and make 
decisions. 

Model Exploration. Model construction includes 
planning for reflective examination of student, 
teacher, and school-level progress. Embedded in 
the model construction process are key elements 
of model exploration. The constructed model 
should include rich opportunities to explore 
the progress of the organization in relation to 
its goals. Yet, model exploration is not merely 
an instrumental activity; instead, exploration is 
cultural and people driven, with teachers and 
administrators central to the evaluative process. 

As Figure 6 indicates, teacher community 
and knowledge are important components of 
the feedback loop. Teachers interpret student 
performance and assessments and in turn they 
should rethink their practice and that of the 
school in conjunction with other instructional 
leaders. This process is greatly enhanced where 
community norms are established and teacher 
turnover is low. Teacher community and norms 
are linked to the model application process. 
The importance of teacher collective practice in 
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school mathematics can’t be overstated (see e.g., 
Gutierrez, 1996). As Campbell (1996) stated, “It 
may be unreasonable to expect sustained and 
reflective reform in isolated classrooms across 
urban settings. It is not unreasonable to address 
reform in urban schools where teachers and 
administrators are working together to develop a 
shared purpose and meaning” (p. 453). 

Both administrators and teachers require 
training to support their community efforts to 
build a student-centered, data-driven organization. 
Classroom strategies for assessing student learning 
should be central to the common professional 
development. The community building and 
professional development activities also must be 
combined with an aligned monitoring process that 
includes: 
 1. Timely and usable data on student progress
 2. Opportunities for mid-course corrections 

based on data
 3. Disaggregated student achievement data and 

mobility information
 4. Recognition and reward for positive results

Model exploration potentially offers important 
benefits to schools and school districts. First, 
model exploration can provide highly visible 
evidence related to opportunity to learn and 
support administrators and teachers seeking 
successful exemplars of effective mathematics 
practice (Skrla and Scheurich, 2001). Second, 
incremental success in student achievement 
and teacher effectiveness can lead to higher 
expectations and goals for academic achievement 
of all demographic groups. 

Model Application. It is possible to focus on 
the design of the model and matters of model 
exploration without attending to the classroom 
practices and support systems associated 
with instruction. Most school systems begin 
the academic year with some kind of school 
improvement plan, and while the quality of these 
plans varies widely, substantive change models 
do exist. Further, it is quite common to find some 
level of model exploration in most school systems. 
Although, the quality factors associated with 
the exploration are often limited, arguably the 
most serious challenge facing leadership is model 
application or implementation. Many instructional 
programs are adopted, distributed, and discarded 
each year. 

There must be a well-thought-out plan to 
gain any implementation traction. A key factor 
for success in this area is a fine-tuned curriculum 
guide that clearly delineates important content 
aligned to appropriate instructional materials. 
Further, research-based professional development 
for teams of teachers and instructional leaders is 
vital. The work of the teacher collective enterprise 
and significant time engaged with high-quality 
professional development are central to the 
implementation process. And quality student 
assessments—classroom based as well as more 
summative assessment—should be linked to 
collective and individual reflection by members 
of the teacher community. Quality curriculum, 
professional development, collective practice and 
the other aspects of the model design are a support 
system for creating a successful teaching and 
learning process. 

Teachers are key to model application. Clearly, 
mathematics teachers at all levels, kindergarten 
through college, are central to the improvement 
of mathematics education. If professional 
development is to a make a difference to students 
in the classroom, it must be teacher-focused and 
student-centered. Stigler and Hiebert (1999) 
write, “Improving something as complex and 
culturally embedded as teaching requires the 
efforts of all players, including students, parents 
and politicians. But teachers must be the primary 
driving force behind change. They are in the best 
position to understand the problems that students 
face and to generate possible solutions” (p. 135).

Successful model application is largely 
classroom based and includes: 
 1. Teachers and students participating in two-

way conversations about mathematics
 2. Teachers pushing for both mathematical 

meaning behind quality curricular tasks and 
procedural fluency

 3. Teachers building instruction on student 
thinking and continuity in the mathematics 
domain daily

 4. Teachers and administrators organizing 
classes and support systems to ensure 
adequate time for students to learn the 
mathematics content

 5. Teachers and administrators maintaining high 
expectations for all learners 
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These five components of instruction 
are foundational to model application and 
opportunity to learn. While these components  
are stable in a broader sense, there are times  
when the design is not quite adequate to achieve 
system goals or more ambitious goals require a 
revised model. 

Model Revision. Careful reflection on the 
progress being made is central to future 
progress. How is the model helping or hindering 
teachers and students? Each phase of the model 
development sequence should be reviewed and 
critical discussions about fine-tuning or model 
abandonment must be held. Revision is not merely 
an end of the year activity. Model revision is a 
continuous process that should be part of the 
design consideration. To aid in both the design 
and model revision process, Appendix B includes 
an Engineering Change Assessment Instrument. 
This instrument can be used to help keep track 
of school and school district progress on key 
opportunity-to-learn factors. 

Taking a model-based approach to 
the mathematics change process involves 
constructing a change strategy, exploring the 
qualities and feasibility of the strategy, applying 
or implementing the strategy, and continuously 
fine-tuning the strategy based on data. A close 
examination of many school district strategic 
plans will reveal many goals and targets related 
to the state accountability systems. Often, what is 
absent is a coherent change strategy or model for 
improvement in mathematics that takes seriously 
the time, quality, and design considerations 
reviewed in this document. Few school districts 
explore the qualities or feasibility of their change 
effort. Rather, many buy into a model without 
considering the conditions and constraints that 
exist in the system. For example, this is evident 
when major initiatives to improve mathematics, 
reading, and science at the elementary level are 
occurring simultaneously. The point is not that 
three reform strategies cannot occur together; 
rather, failure to coordinate the changes is a 
common strategic flaw. Many reasonable change 
strategies are destroyed as a result of the failure to 
consider the feasibility of the model. 

Engineering Progress:  
Limiting Conditions
Limiting conditions are conditions that materially 
affect the appraisal process and, as a consequence, 
the value conclusion. For example, having no 
electrical power in a school building is a limiting 
condition, as it prohibits the use of computers 
and other electronic equipment. This notion 
can be applied to mathematics education. What 
limiting conditions exist that can affect student 
performance on mathematics outcome measures 
and, as a consequence, the public’s perception  
of school quality? A brief examination of  
recent legislation will provide some insight  
into this question. 

Current educational policy and law, more 
specifically NCLB, calls for educators to carefully 
examine student achievement by demographic 
group. Moreover, schools and administrators 
are being held accountable for improved student 
performance. This is a radical departure from past 
educational practice. In fact, this law represents a 
major shift in federal discourse related to matters 
of equality. According to Crenshaw (1988), a 
legal scholar, there are two visions of equality 
present in anti-discrimination legislation and 
discourse. One view of equality, which she refers 
to as the restrictive view, “treats equality as a 
process, downplaying the significance of actual 
outcomes” (p. 1341). This monograph highlighted 
important processes related to student learning. 
While critical to engineering positive progress, the 
opportunity-to-learn recommendations and other 
research-based lessons are limited. Specifically, 
they represent building blocks. However, someone 
must build the building. Thus, a potential limiting 
condition is related to people, more specifically to 
educators willing to do the hard work associated 
with building mathematical minds. 

In the case of school mathematics, the 
“product” is optimal student learning as 
measured by state-mandated tests—the intended 
outcome. Hence, current law as reflected in 
NCLB, is more consistent with another view of 
equality—the expansive view. Professor Crenshaw 
(1988) stated this second view of equality, the 
expansive vision, “stresses equality as a result 
and looks to real consequences” (p. 1341). The 
NCLB legislation calls for educators to reflect 
seriously on student outcomes by demographic 
group. This expansive view suggests that equal 
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treatment of students is not equitable if it leads to 
differential outcomes. This perspective conflicts 
with the worldview held by many educators that 
“equal treatment” of all students is optimal. If 
educators assume a “one-size-fits-all” approach 
to classroom practice, without careful reflection 
and planning for individual as well as collective 
student learning, the product is likely to be 
unequally distributed opportunities to learn and 
continued underperformance of traditionally 
underserved students. In the case of NCLB this 
“equal treatment” worldview and its associated 
ideological perspective—colorblindness—are 
limiting conditions. 

Many educators who view the “equal 
treatment” position as a well-meaning and 
fair perspective assume colorblindness as 
a political or ideological stance. Part of the 
problem with colorblindness is that it ignores 
students and their performance. Irvine (1990) 
states, “by ignoring students’ most obvious 
physical characteristic, race, …teachers are also 
disregarding students’ unique cultural behaviors, 
beliefs, and perceptions—important factors that 
teachers should incorporate, not eliminate, in 
their instructional strategies” (p. 54). Today, the 
colorblind method of mathematics education 
creates barriers to true equality by erecting 
barriers in school mathematics such as 
 1. Persistent tracking, 
 2. Fewer opportunities for African American 

and Hispanic students to learn from the best 
qualified teachers,

 3. Less access to technology, and 
 4. Cultural discontinuity between school 

mathematics and the family life of diverse 
student groups (National Science Board, 1991; 
Oakes, 1990; Piller, 1992; Stanic, 1991). 

The first three of these barriers to equity, 
which are quantifiable, are considered “acceptable” 
indicators of unequal educational conditions. In 
contrast, this fourth barrier is subtle and difficult 
to identify and measure in everyday schooling. 
The matter of family life and school mathematics 
warrants additional discussion.

Less frequently, educators have explored the 
experiences of stakeholders other than teachers 

in the process of school mathematics reform 
(see Graue and Smith, 1996). This is a serious 
limiting condition. In particular, there is limited 
information available on how parents 
 • Perceive their children’s mathematics 

instruction,
 • Interpret their children’s performance in light 

of mathematics standards and state testing, or
 • View their role in mathematics education 

process. 

As Graue and Smith (1996) noted, despite 
parental presence in many aspects of educational 
reform rhetoric, researchers of school mathematics 
practice and design have shown little interest in 
parents.15 Ethically, in the context of high-stakes 
testing and reformed practice, this is a condition 
that must be addressed by the focused efforts of 
scholars, school-based educators, and community-
based organizations. Matters of ethics represent 
the final limiting conditions.

The pressures of high-stakes testing, 
public disclosure of testing results, and the real 
possibility of job loss or demotions have placed a 
new and heavy burden on professional educators. 
This burden will cause some to carefully design 
change strategies and create exciting learning 
environments for students. For others, the 
score-high mentality will create new ethical 
dilemmas. Reports have emerged of schools and 
districts removing large numbers of students 
from opportunities to test, rather than creating 
appropriate opportunities to learn. The ethical 
challenges are endless when the stakes are high 
and very real. As with good engineers, educators 
must factor ethics into their thinking, everyday 
planning, and ultimately into their design strategy. 
Failure to do so will endanger the building 
process.

In the pursuance of an engineering strategy 
in mathematics education, the importance of 
dedicated educators cannot be underestimated. 
Many educators are excellent, but some are not. 
The following questions highlight the traits of 
those ready to improve school mathematics:
 • Does the educator listen to new ideas with an 

open mind?
 • Does the teacher consider a variety of solution 

15 One exception is Family Math (www.lhs.berkeley.edu/equals/FMnetwork.htm).



methods associated with student learning 
before choosing a design approach?

 • Is the educator content with determining a 
learning design on the basis of trial and error?

 • Does the teacher use phases such as, “I need to 
understand why students learn mathematics 
with this approach?” and “Let’s consider all 
possibilities.”
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If educators are eager to listen, open to a 
variety of educational solutions, never content 
with just trial and error methods, and pressed to 
know why a method works with students, they 
represent the type of teachers and instructional 
leaders who can engineer changes in mathematics 
education. These kinds of educators are 
foundational for “Learning to Build.” 
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Proficiency Level Proficiency Description

Below level 1 Unable to perform simple arithmetic operations

Level 1 (Low) Able to perform simple arithmetical operations on whole numbers; single step problems

Level 2 Able to perform simple operations with decimals, fractions, powers, and roots

Level 3 Able to perform simple problem solving of low-level mathematical concepts

Level 4 Understands intermediate-level mathematics concepts or demonstrates the ability to 
formulate multi-step solutions to word problems

Level 5 (High) Able to solve complex multi-step word problems, or demonstrates knowledge of 
mathematical principles found in advanced mathematics courses, or both

Table A1:   Mathematics Proficiency Levels from the 1992 NELS:88 Second Follow-up Survey     

Source: Green, Dugoni, Ingels, and Camburn, 1995.

Group HS&B 1980 
mean

1990 NELS: 
88 mean

Effect Size

All Students 32.81 35.97 .26

African 
American

24.51 28.74 .35

Asian 38.82 40.26 .12

Hispanic 25.96 30.75 .34

White 35.41 37.96 .21

Table A2:   Sophomore Cohorts from the HS&B 
1980 Study and the 1990 NELS: 88 Follow-up 
Mathematics Study, by Racial-Ethnic Group

Source: Rasinski, Ingels, Rock, Pollack, 1993.

For all students, the 1980 HS&B mean test score was 
32.81; the 1990 NELS:88 mean was 35.97; and the 
effect size was .26. These are scale scores constructed 
using IRT scaling procedures. The effect size of .26 is 
the difference between the 35.97 and 32.81, which 
is 3.16, divided by the pooled 1980/1990 standard 
deviation. The .26 effect size indicated that on 
average, the sophomores in 1990 were performing 
26% of a standard deviation higher than the 1980 
HS&B cohort. 
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Parents’ 
Level of 
Education

Test Year Age 9 Age 13 Age 17

Less than 
High School 1999 213.5 (2.8) 256.2 (2.8) 289.2 (1.8)

1996 219.8 (3.3) 253.7 (2.4) 280.5 (2.4)*

1994 210.0 (3.0) 254.5 (2.1) 283.7 (2.4)

1992 216.7 (2.2) 255.5 (1.0) 285.5 (2.3)

1990 210.4 (2.3) 253.4 (1.8) 285.4 (2.2)

1986 200.6 (2.5)* 252.3 (2.3) 279.3 (2.3)*

1982 199.0 (1.7)* 251.0 (1.4) 279.3 (1.0)*

1978 200.3 (1.5)* 244.7 (1.2)* 279.6 (1.2)*

Graduated 
High School 1999 224.4 (1.7) 264.0 (1.1) 299.1 (1.6)

1996 221.2 (1.7) 266.8 (1.1) 297.3 (2.4)

1994 225.3 (1.3) 265.7 (1.1) 295.3 (1.1)

1992 222.0 (1.5) 263.2 (1.2) 297.6 (1.7)

1990 226.2 (1.2) 262.6 (1.2) 293.7 (0.9)*

1986 218.4 (1.6)* 262.7 (1.2) 293.1 (1.0)*

1982 218.3 (1.1)* 262.9 (0.8) 293.4 (0.8)*

1978 219.2 (1.1)* 263.1 (1.0) 293.9 (0.8)*

Graduated 
College 1999 239.7 (0.8) 285.8 (1.0) 316.5 (1.2)

1996 239.7 (1.4) 282.9 (1.2) 316.6 (1.3)

1994 237.8 (0.8) 284.9 (1.2) 317.6 (1.4)

1992 236.2 (1.0) 282.8 (1.0)* 315.9 (1.0)

1990 237.6 (1.3) 280.4 (1.0)* 316.2 (1.3)

1986 231.3 (1.1)* 279.9 (1.4)* 313.9 (1.4)

1982 228.8 (1.5)* 282.3 (1.5) 312.4 (1.0)*

1978 231.3 (1.1)* 283.8 (1.2) 316.8 (1.0)

Table A3:    NAEP Trends in Average Mathematics 
Scale Scores by Parents’ Highest Level of Education

  Standard errors of the scale scores appear in parentheses. 
*Significantly different from 1999. Source: NAEP 1999 Trends 
  in Academic Progress, NCES (2000).

SES  
Classification

HS&B 1980 
mean

1990 NELS: 
88 mean

Effect Size

High 39.53 42.90 .27

High Middle 34.58 37.15 .21

Low Middle 31.65 34.10 .20

Low 26.73 29.17 .18

Table A4:   Mathematics Performance of 
Sophomore Cohorts from the HS&B 1980 Study 
and the 1990 NELS:88 Follow-up Study, by SES

Source: Rasinski, Ingels, Rock, Pollack, 1993.

SES  
Classification

Below basic or 
level 1

Levels 4 or 5

Low

Asian 26.2 22.7

Hispanic 51.4 12.5

African American 60.4 4.9

White 40.2 18.3

Middle

Asian 15.1 40.7

Hispanic 35.0 25.3

African American 44.9 15.6

White 21.7 34.9

Low

Asian 8.1 64.7

Hispanic 16.6 43.8

African American 26.3 26.5

White 7.7 58.9

Table A5:   Mathematics Proficiency by Race, 
Controlling for SES, 1992 NELS:88 Second  
Follow-up Survey of Seniors

Source: Green, Dugoni, Ingels, & Camburn (1995).
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For further information:

Southeast Eisenhower Regional Consortium @ SERVE
1203 Governor’s Square Boulevard, Suite 400
Tallahassee, Florida  32301
(850) 671-6033
Please visit  www.serve.org/Eisenhower

Mid-Atlantic Equity Center
5454 Wisconsin Avenue, Suite 655
Chevy Chase, Maryland  20815
(301) 657-7741
Please visit www.maec.org 


